科目: 來源: 題型:
【題目】已知平行四邊形ABCD的三個頂點的坐標(biāo)為,,.
在中求邊AC的高線所在直線的一般方程;
求平行四邊形ABCD的對角線BD的長度;
求平行四邊形ABCD的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品需要甲材料,乙材料,并且需要花費1天時間;生產(chǎn)一件產(chǎn)品需要甲材料,乙材料,也需要1天時間,生產(chǎn)一件產(chǎn)品的利潤為1000元,生產(chǎn)一件產(chǎn)品的利潤為2000元.該企業(yè)現(xiàn)有甲、乙材料各,則在不超過120天的條件下,求生產(chǎn)產(chǎn)品、產(chǎn)品的利潤之和的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點和動點,以線段為直徑的圓內(nèi)切于圓.
(1)求動點的軌跡方程;
(2)已知點, ,經(jīng)過點的直線與動點的軌跡交于, 兩點,求證:直線與直線的斜率之和為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列三個命題,其中所有錯誤命題的序號是______.
拋物線的準(zhǔn)線方程為;
過點作與拋物線只有一個公共點的直線t僅有1條;
是拋物線上一動點,以P為圓心作與拋物線準(zhǔn)線相切的圓,則這個圓一定經(jīng)過一個定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在正方體中,E是棱的中點,F是側(cè)面內(nèi)的動點,且平面,給出下列命題:
點F的軌跡是一條線段;與不可能平行;與BE是異面直線;平面不可能與平面平行.
其中正確的個數(shù)是
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機構(gòu)組織了一次檢測考試,并隨機抽取了部分高三理科學(xué)生數(shù)學(xué)成績繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計該市此次檢測理科數(shù)學(xué)的平均成績;(精確到個位)
(2)研究發(fā)現(xiàn),本次檢測的理科數(shù)學(xué)成績近似服從正態(tài)分布(, 約為19.3).
按以往的統(tǒng)計數(shù)據(jù),理科數(shù)學(xué)成績能達(dá)到升一本分?jǐn)?shù)要求的同學(xué)約占,據(jù)此估計本次檢測成績達(dá)到升一本的理科數(shù)學(xué)成績大約是多少分?(精確到個位)
已知市理科考生約有1000名,某理科學(xué)生此次檢測數(shù)學(xué)成績?yōu)?07分,則該學(xué)生全市排名大約是多少名?
(說明: 表示的概率, 用來將非標(biāo)準(zhǔn)正態(tài)分布化為標(biāo)準(zhǔn)正態(tài)分布,即,從而利用標(biāo)準(zhǔn)正態(tài)分布表,求時的概率,這里.相應(yīng)于的值是指總體取值小于的概率,即.參考數(shù)據(jù): , , ).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知橢圓,橢圓的長軸長為8,離心率為.
求橢圓方程;
橢圓內(nèi)接四邊形ABCD的對角線交于原點,且,求四邊形ABCD周長的最大值與最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若函數(shù)滿足下列條件:在定義域內(nèi)存在,使得成立,則稱函數(shù)具有性質(zhì);反之,若不存在,則稱函數(shù)不具有性質(zhì).
(1)已知函數(shù)具有性質(zhì),求出對應(yīng)的的值;
(2)證明:函數(shù)一定不具有性質(zhì);
(3)下列三個函數(shù):,,,哪些恒具有性質(zhì),并說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】小李從網(wǎng)上購買了一件商品,快遞員計劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時間為下午5:30-6:00.快遞員到小李家時,如果小李未到家,則快遞員會電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來;否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com