科目: 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,過原點(diǎn)且斜率為1的直線交橢圓于兩點(diǎn),四邊形的周長與面積分別為8與 .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線交橢圓于兩點(diǎn),且,求證:到直線的距離為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,多面體ABCD﹣A1B1C1D1為正方體,則下面結(jié)論正確的是( 。
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.異面直線AD與CB1所成的角為30°
查看答案和解析>>
科目: 來源: 題型:
【題目】某班從6名班干部中(其中男生4人,女生2人),任選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)在區(qū)間上的值域
(2)把函數(shù)圖象所有點(diǎn)的上橫坐標(biāo)縮短為原來的倍,再把所得的圖象向左平移個(gè)單位長度,再把所得的圖象向下平移1個(gè)單位長度,得到函數(shù), 若函數(shù)關(guān)于點(diǎn)對稱
(i)求函數(shù)的解析式;
(ii)求函數(shù)單調(diào)遞增區(qū)間及對稱軸方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) 在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減;如圖,四邊形中,,,為的內(nèi)角的對邊,
且滿足.
(Ⅰ)證明:;
(Ⅱ)若,設(shè),,
,求四邊形面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,D是AC的中點(diǎn),四邊形BDEF是菱形,平面平面ABC,,,.
若點(diǎn)M是線段BF的中點(diǎn),證明:平面AMC;
求平面AEF與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線:(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx-ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. (-∞,0) B. C. (0,1) D. (0,+∞)
查看答案和解析>>
科目: 來源: 題型:
【題目】給出以下命題:
① 雙曲線的漸近線方程為;
② 命題“,”是真命題;
③ 已知線性回歸方程為,當(dāng)變量增加個(gè)單位,其預(yù)報(bào)值平均增加個(gè)單位;
④ 設(shè)隨機(jī)變量服從正態(tài)分布,若,則;
⑤ 已知,,,,依照以上各式的規(guī)律,得到一般性的等式為,()
則正確命題的序號為 (寫出所有正確命題的序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)的定義域?yàn)椋?/span>0,+∞),且滿足f(2)=1,f(xy)=f(x)+f(y),又當(dāng)x2>x1>0時(shí),f(x2)>f(x1).
(1)求f(1)、f(4)、f(8)的值;
(2)若有f(x)+f(x-2)≤3成立,求x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com