科目: 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在實數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=.
(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;
(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.
查看答案和解析>>
科目: 來源: 題型:
【題目】(題文)隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”的贊成人數(shù)如下表:
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“使用微信交流”的態(tài)度與人的年齡有關(guān).
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成的人數(shù) | |||
不贊成的人數(shù) | |||
合計 |
(2)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考公式:,.
參考數(shù)據(jù):
0.100 | ||||
查看答案和解析>>
科目: 來源: 題型:
【題目】下面四個命題,
(1)函數(shù)在第一象限是增函數(shù);
(2)在中,“”是“”的充分非必要條件;
(3)函數(shù)圖像關(guān)于點對稱的充要條件是;
(4)若,則.
其中真命題的是_________.(填所有真命題的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)時間經(jīng)過(時),時針、分針各轉(zhuǎn)了多少度?各等于多少弧度?
(2)有人說,鐘的時針和分針一天內(nèi)會重合24次。你認為這種說法是否正確?請說明理由.
(提示:從午夜零時算起,假設分針走了t min會與時針重合,一天內(nèi)分針和時針會重合n次,建立t關(guān)于n的函數(shù)解析式,并畫出其圖象,然后求出每次重合的時間)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)設定義在上的函數(shù)在點處的切線方程為,若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,當時,試問是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司生產(chǎn)A種型號的電腦.2013年平均每臺電腦的生產(chǎn)成本為5000元,并按純利潤為20%定出廠價,2014年開始,公司更新設備,加強管理,逐步推行股份制,從而使生產(chǎn)成本逐年降低,2017年平均每臺A種型號的電腦出廠價僅是2013年的80%,實現(xiàn)了純利潤50%.
(1)求2017年每臺A種型號電腦的生產(chǎn)成本;
(2)以2013年的生產(chǎn)成本為基數(shù),用二分法求2013-2017年間平均每年生產(chǎn)成本降低的百分率(精確度001).
查看答案和解析>>
科目: 來源: 題型:
【題目】如果直線與橢圓只有一個交點,稱該直線為橢圓的“切線”.已知橢圓,點是橢圓上的任意一點,直線過點且是橢圓的“切線”.
(1)證明:過橢圓上的點的“切線”方程是;
(2)設,是橢圓長軸上的兩個端點,點不在坐標軸上,直線,分別交軸于點,,過的橢圓的“切線”交軸于點,證明:點是線段的中點;
(3)點不在軸上,記橢圓的兩個焦點分別為和,判斷過的橢圓的“切線”與直線,所成夾角是否相等?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】平面內(nèi)的“向量列”,如果對于任意的正整數(shù),均有,則稱此“向量列”為“等差向量列”,稱為“公差向量”.平面內(nèi)的“向量列”,如果且對于任意的正整數(shù),均有(),則稱此“向量列”為“等比向量列”,常數(shù)稱為“公比”.
(1)如果“向量列”是“等差向量列”,用和“公差向量”表示;
(2)已知是“等差向量列”,“公差向量”,,;是“等比向量列”,“公比”,,.求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com