相關(guān)習(xí)題
 0  263259  263267  263273  263277  263283  263285  263289  263295  263297  263303  263309  263313  263315  263319  263325  263327  263333  263337  263339  263343  263345  263349  263351  263353  263354  263355  263357  263358  263359  263361  263363  263367  263369  263373  263375  263379  263385  263387  263393  263397  263399  263403  263409  263415  263417  263423  263427  263429  263435  263439  263445  263453  266669 

科目: 來源: 題型:

【題目】如圖所示甲,在四邊形ABCD中,,,是邊長為8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如圖所示乙所示,點O,MN分別為棱AC,PA,AD的中點.

求證:平面PON;

求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為一等品;指標(biāo)在區(qū)間的為二等品,現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測,測試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:

若從甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級,利用分層抽樣的方法抽取5件,再從這5件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;

該廠所生產(chǎn)這種零件,若是一等品每件可售50元,若是二等品每件可售20甲種生產(chǎn)方式每生產(chǎn)一件零件無論是一等品還是二等品的成本為10元,乙種生產(chǎn)方式每生產(chǎn)一件零件無論是一等品還是二等品的成本為18將頻率分布直方圖中的頻率視作概率,用樣本估計總體比較在甲、乙兩種不同生產(chǎn)方式下,哪種生產(chǎn)方式生產(chǎn)的零件所獲得的平均利潤較高?

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,點的極坐標(biāo)為,以極點為極點,以軸正半軸為極軸建立極坐標(biāo)系.

(1)曲線的直角坐標(biāo)方程和點的直角坐標(biāo);

(2)若過點且傾斜角為的直線,點為曲線上任意一點,求點到直線的最小距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】甲、乙二射擊運動員分別對一目標(biāo)射擊次,甲射中的概率為,乙射中的概率為,求:

(1)人都射中目標(biāo)的概率; (2)人中恰有人射中目標(biāo)的概率;

(3)人至少有人射中目標(biāo)的概率; (4)人至多有人射中目標(biāo)的概率?

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)求a;

(2)證明:存在唯一的極大值點,且.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平行四邊形中,,,,EA的中點(如圖1),將沿CD折起到圖2的位置,得到四棱錐是

1)求證:平面PDA;

2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時,求函數(shù)的極值;

(2)若不等式對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時,拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?

查看答案和解析>>

科目: 來源: 題型:

【題目】一束光線發(fā)出,射到軸上,被軸反射到圓上.(1)求反射線通過圓心時,光線的方程;(2)求在軸上,反射點的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點為,離心率為,點在橢圓上,且的面積的最大值為.

(1)求橢圓的方程;

(2)已知直線與橢圓交于不同的兩點,若在軸上存在點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案