相關習題
 0  265503  265511  265517  265521  265527  265529  265533  265539  265541  265547  265553  265557  265559  265563  265569  265571  265577  265581  265583  265587  265589  265593  265595  265597  265598  265599  265601  265602  265603  265605  265607  265611  265613  265617  265619  265623  265629  265631  265637  265641  265643  265647  265653  265659  265661  265667  265671  265673  265679  265683  265689  265697  266669 

科目: 來源: 題型:

【題目】已知圓,直線過定點A(1,0).

(Ⅰ)若與圓相切,求的方程;

(Ⅱ)若與圓相交于P,Q兩點,線段PQ的中點為M,又的交點為N,求證: 為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如下圖,在四棱錐中,,,,,,的中點。

(1)求證:;

(2)線段上是否存在一點,滿足?若存在,試求出二面角的余弦值;若不存在,說明理由。

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間和極值點;

2)若單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關于x的不等式的解集.

查看答案和解析>>

科目: 來源: 題型:

【題目】某校為提高課堂教學效果,最近立項了市級課題《高效課堂教學模式及其運用》,其中王老師是該課題的主研人之一,為獲得第一手數(shù)據(jù),她分別在甲、乙兩個平行班采用“傳統(tǒng)教學”和“高效課堂”兩種不同的教學模式進行教學實驗.為了解教改實效,期中考試后,分別從兩個班級中各隨機抽取名學生的成績進行統(tǒng)計,作出如圖所示的莖葉圖,成績大于分為“成績優(yōu)良”.

1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“成績優(yōu)良與教學方式有關”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

2)從甲、乙兩班個樣本中,成績在分以下(不含分)的學生中任意選取人,求這人來自不同班級的概率.

附:,其中

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),若,則下列結論:①;②;③;④,其中正確的序號為___________(把你認為正確的結論都填上).

查看答案和解析>>

科目: 來源: 題型:

【題目】給定無窮數(shù)列,若無窮數(shù)列滿足:對任意的,都有,則稱“比較接近”.

(1)設是首項為1,公比為的等比數(shù)列,,判斷數(shù)列是否與“比較接近”;

(2)設數(shù)列的前四項為:,是一個與比較接近的數(shù)列,記集合,求中元素的個數(shù)

(3)已知是公差為的等差數(shù)列,若存在數(shù)列滿足:較接近,且在中至少有1009個為正,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,在平面直角坐標系上放置一個邊長為1的正方形,此正方形沿軸滾動(向左或者向右均可),滾動開始時,點在原點處,例如:向右滾動時,點的軌跡起初時以點為圓心,1為半徑的圓弧,然后以點軸交點為圓心,長度為半徑……,設點的縱坐標與橫坐標的函數(shù)關系式是,該函數(shù)相鄰兩個零點之間的距離為.

(1)寫出的值,并求出當時,點軌跡與軸所圍成的圖形的面積,研究該函數(shù)的性質(zhì)并填寫下面的表格:

函數(shù)性質(zhì)

結論

奇偶性

單調(diào)性

遞增區(qū)間

遞減區(qū)間

零點

(2)已知方程在區(qū)間上有11個根,求實數(shù)的取值范圍

(3)寫出函數(shù)的表達式.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,都是邊長為2的正三角形,平面平面,平面,.

1)證明:直線平面

2)求直線與平面所成的角的大;

3)求平面與平面所成的二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項等比數(shù)列滿足,數(shù)列滿足.

1)求數(shù)列,的通項公式;

2)令,求數(shù)列的前項和;

3)若,且對所有的正整數(shù)都有成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案