題目列表(包括答案和解析)
已知f(x)是定義在集合M上的函數(shù).若區(qū)間D⊆M,且對任意x0∈D,均有f(x0)∈D,則稱函數(shù)f(x)在區(qū)間D上封閉.
(1)判斷f(x)=x-1在區(qū)間[-2,1]上是否封閉,并說明理由;
(2)若函數(shù)g(x)=在區(qū)間[3,10]上封閉,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)h(x)=x3-3x在區(qū)間[a,b](a,b∈Z,且a≠b)上封閉,求a,b的值.
已知集合M是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)f(x)組成的集合:
①f(x)在其定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在f(x)的定義域內(nèi)存在區(qū)間,使得f(x)在[a,b]上的值域是
(1)判斷函數(shù)f(x)=是否屬于集合M?若是,則求出a,b,若不是,說明理由;
(2)若函數(shù)f(x)=+t∈M,求實(shí)數(shù)t的取值范圍.
已知函數(shù)f(x)=.
(1)若f-1(mx2+mx+1)的定義域?yàn)?B>R,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)時(shí),求函數(shù)y=f2(x)-2af(x)+3的最小值g(a).
(3)是否存在實(shí)數(shù)m>n>3,使得g(x)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2],若存在,求出m、n的值;若不存在,則說明理由.
已知函數(shù)f(x)=x-ln(x+m)在定義域內(nèi)連續(xù).
(1)求f(x)的單調(diào)區(qū)間和極值.
(2)當(dāng)m為何值時(shí),f(x)≥0恒成立?
(3)定理:若函數(shù)g(x)在[a,b]上連續(xù),并具有單調(diào)性,且滿足g(a)與g(b)異號,則方程g(x)=0在[a,b]內(nèi)有唯一實(shí)根.
試用上述定理證明:當(dāng)m∈N*且m>1時(shí)方程f(x)=0在[1-m,em-m]內(nèi)有唯一實(shí)根.(e為自然對數(shù)的底)
1.C(系數(shù)最大項(xiàng),即是二項(xiàng)式系數(shù)最大的項(xiàng)是中間項(xiàng),2n為偶數(shù),所以中間項(xiàng)為第n+1項(xiàng),故選C.)2.C(因集合有兩個(gè)不同的元素,所以方程ax2-2x+1=0有兩個(gè)不等的解,即 a≠0,Δ=(-2)2-
3.D(由題意可知≠1,解得x≠1,x≠2,故選D)
4.(理)C(∵ =
= =.故選 C.)
(文)B(因?yàn)? f′(x)<0(a <x <b),所以函數(shù)f(x)在區(qū)間(a, b) 是減函數(shù),又f(b)>0,所以函數(shù)f(x)在(a,b)內(nèi)必有f(x)>0.故選B)
5.(理)D(珍藏系列金銀、金玉新工藝紀(jì)念章和擺件中先去掉一款,分層抽樣時(shí)每層都是整數(shù),故選D.)
(文)B(∵=,∴12400×=124,故選B.)
6.(理)C(∵f(x) =2x2-lnx的定義域?yàn)閧x| x>0},又f′(x)=,令f′(x)>0即>0,由定義域?yàn)閧x| x>0},只須解得x>,因此選C.)
(文)C(因?yàn)閒(x)=x3+x-2,所以f′(x)=3x2+1.直線y=4x-1的斜率為4,令f′(x)=3x2+1=4,得x=±1,f(1)=0,f(-1)=-4.f(1)=0,f(-1)=-4.所以曲線f(x)=x3+x-2在點(diǎn)(1,0)、(-1,-4)處的切線與直線y=4x-1平行.故選C.)
7.C(當(dāng)a≠0時(shí),f(x)的圖像的對稱軸為直線x=1,f(x)=ax2-2ax+c,,∴ a<0,b=-
8.(理)B( 拋擲-次,正好出現(xiàn)2枚正面向上,3枚反面向上的概率為=,Eξ=80×=25,故選B)
(文)D(因?yàn)椋?,s2=;所以=3-2=4,
S2=9s2=3,故選D)
9.B(令f(x)=x4-4x3-2,則f′(x)=4x3-12x2=4x2(x-3),所以在區(qū)間x∈[-1,4],f(x)min=f(3)=-29.即-29>-a,∴a>29,故選 B)
10.C(由題意知p,q中有且僅有一個(gè)真命題.
若p真,∵2x-x2=-(x-1)2+1≤1,()x+4>4;∴
1<m≤4,若q真,則7-
11.B(令x=-2即f(2)=f(-2)+f(2),∴f(-2)=0,又f(x)是偶函數(shù),即 f(2)=0,∴f(x+4)=f(x), 故f(x)的周期為4.f(3)=f(-1)=f(1)=2,f(4)=f(0)=0.f(2008)=f(502×4)=f(0)=0.∴f(1)+f(2)+f(3)+… +f(2007)=f(1)+f(2)+f(3)+…+ f (2007)+ f (2008) = 502[f(1)+f(2)+f(3)+f(4)]=2008,故選B.)
12.(理)C(原式可看成點(diǎn)P ( 1, 3 )、Q (-,)兩點(diǎn)連線的斜率.令x=-,y=(0≤y≤1);所以x2+y2=1(-1≤x≤0 ) .即點(diǎn)Q位于單位圓在第二象限的圓弧上且端點(diǎn)的坐標(biāo)分別是B (-1,0)、C (0,1). ∴kPB=;kPC=2,設(shè)過點(diǎn)P與圓弧有公共點(diǎn)的直線方程為l:kx-y-k+3=0,則≤1,即k≤.結(jié)合圖形綜上可知:A∈[,2].故選C.)
(文)B(思路一:令x=,y=.則x2+y2=1(x≥0,y≥0).x=sinθ,y=cosθ(0≤θ≤). 所以A=x+y=sinθ+cosθ=sin(θ+) ,又≤θ+≤.則A ∈[1,],故選B.
思路二:A2=1+2=1+2,當(dāng)m=時(shí),A2最大值為2;當(dāng)m=1或4時(shí),A2最小值為1.又∵A>0,則A∈[1,],故選B.)
13.(理)0(因?yàn)閒(x1)=f(x2)=2008,所以x1+x2=-.則f(x1+x2)=0.故答案為0)
(文) (原式=2log32-5log32+2+3log32+=,故答案為 )
14.(理) (首先對這20個(gè)數(shù)按被3除的余數(shù)分類①1,4,7,10,13,16,19.②2,5,8,11,14,17,20.③3,6,9,12,15,18. 故所求的概率是= .故答案為 )
(文)(因?yàn)榇藛栴}可看成編號為1,2,3,…,n的n個(gè)人進(jìn)行摸獎(jiǎng)且每人摸一張, 編號為k的人摸到一號獎(jiǎng)券,又每人摸到每一個(gè)號的概率相同.故答案為.)
15.300(小于
16.9(因?yàn)楹瘮?shù)解析式為y=x2且值域?yàn)閧1,4},所以x=±1,±2.故“同族函數(shù)”共有C ?C+
17.解:(1)當(dāng) x<0時(shí),-x>0,f(-x)=-(x)2+2(-x)=-x2-2x 1分
又f(x)為奇函數(shù),∴f(-x)=-f(x)=-x2-2x,
∴f(x)=x2+2x,∴m=2,y=f(x)的
圖象如右所示 4分
(2)由(1)知
f(x)= ,由圖象可知,f(x)在[-1,1]上單調(diào)遞增,
要使地f(x)在[-1,|a|-2]上單調(diào)遞增,
只需 8分
解之得-3≤a<-1或1<a≤310分
18.解:(1)因?yàn)?f(1)=-3+a(6-a)+b=-a2+
當(dāng)b ≤-6時(shí),Δ≤0,∴f(1)>0的解集為Φ 4分
當(dāng)b>-6時(shí),3-<a <3+.
∴f(1)>0的解集為{a|3-<a<3+} 6分
(2)∵ 不等式-3x2+a(6-a)x+b>0的解集為(-1,3)
∴f(x)>0與不等式(x+1)(x-3)<0同解 8分
∵3x2-a(6-a)x-b<0解集為(-1,3) 10分
∴,解之得 12分
19.解:(理)(1)設(shè)連對的個(gè)數(shù)為y,得分為ξ,則y=0,1,2,4
因此ξ的所有可能的取值為0,2,4,8 2分
P(ξ=0)==;P(ξ=2)==;P(ξ=4)==;P(ξ=8)==. 9分
數(shù)學(xué)?第頁(見反面)所以ξ的分布列為
ξ
0
2
4
8
P
10分
(2)Eξ=0×+2×+4×+8×=2
答:該愛好者得分的數(shù)學(xué)期望為2 12分
(文)(1)抽出的產(chǎn)品中恰有1件正品的可能情況有CC=12種 2分
從這7件產(chǎn)品中一次性隨機(jī)抽出3件的所有可能有C=35種 4分
則抽出的產(chǎn)品中恰有1件正品數(shù)的概率為= ……6分
(2)抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的可能情況有CC+CC+C=31種 9分
從這7件產(chǎn)品中一次性隨機(jī)抽出4件的所有可能有C=35種 11分
所以抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的概率為 12分
20.解:(理)(1)由f(x)=-(x≤-1)得f-1(x)=-(x≤0),an=f-1(an-1)=-. 2分
由a1=-1,得a2=-,a3=-,a4=-,猜想an=-. 4分
①當(dāng)n=1時(shí),a1=-1=-,猜想成立; 5分
數(shù)學(xué)?第頁②設(shè)n=k時(shí)猜想成立,即ak=-,當(dāng)n=k+1時(shí),
ak+1=-=-
=-,即猜想對n=k+1時(shí)也成立.
由①、②知,an=-對一切n∈N*成立. ………8分
(2) = =
= =-1. 12分
(文)(1)由題意得:上年度的利潤為(13-10)×5000=15000萬元;本年度每輛車的投入成本為10×(1+x);本年度每輛車的出廠價(jià)為13×(1+0.7x);本年度年銷售量為5000×(1+0.4x),因此本年度的利潤為y=[13×(1+0.7x)-10×(1+x)]×5000×(1+0.4x)=(3-0.9x)×5000×(1+0.4x)=-1800x2+1500x+15000(0<x<1),由-1800x2+1500x+15000>15000,解得0<x<,所以當(dāng)0<x<時(shí),本年度的年利潤比上年度有所增加. 5分
(2)本年度的利潤為f(x)=(3-0.9x)×3240×(-x2+2x+)=3240×(0.9x3-4.8x2+4.5x+5),則f′(x)=3240×(2.7x2-9.6x+4.5)=972(9x-5)(x-3) 8分
由f′(x)=0,解得x=或x=3,當(dāng)x∈(0,)時(shí),f′(x)>0,f(x)是增函數(shù);當(dāng)x∈(,1)時(shí),f′(x)<0,f(x)是減函數(shù). 10分
∴當(dāng)x=時(shí),f(x)取極大值f()=20000萬元,
因?yàn)閒(x)在(0,1)上只有一個(gè)極大值,所以它是最大值,
所以當(dāng)x=時(shí),本年度的年利潤最大,最大利潤為20000萬元! 12分
21.解:(理)(1)由題設(shè)可知,f′(x)=3x2-4ax-
即3+
又3-
∴<a<.故a=1 6分
(2)由題設(shè)可知,f(x)=x3-2x2-3x,g(x)=x3+(1+b)x2-b,∴g(x)-f(x)=(b+3)x2+3x-b≥0在區(qū)間[-1,2]上恒成立 7分
?)當(dāng)b+3=0,即b=-3時(shí),g(x)-f(x)=3(x+1)≥0在區(qū)間[-1,2]上恒成立. 8分
?)當(dāng) b+3≠0,即g(x)-f(x)=(b + 3)x2+3x-b=(b+3)(x + 1)(x-)≥0,在區(qū)間[-1,2]上恒成立
①當(dāng)b+3>0,令 (b + 3)(x + 1)(x - )= 0,解得 x =-1; x =.由題設(shè)可知;x=≤-1,即-3<b≤-. 10分
②當(dāng)b+3<0,令(b + 3)(x + 1)(x-)=0,解得x=-1;x=.由題設(shè)可知;x=≥2,即-6≤b<-3 11分
綜上可知: 實(shí)數(shù)b的取值范圍是-6≤b≤- ………12分
(文)f′(x)=-3x2+2ax+b, 2分
因?yàn)楹瘮?shù)f(x)在x=1處的切線斜率為-3,
所以f′(1)=-3+
又f(1)=-1+a+b+c=-2得a+b+c=-1. 2分
(1)函數(shù)f(x)在x=-2時(shí)有極值,所以f′(-2)=-12-
解得a=-2,b=4,c=-3 5分
所以f(x)=-x3-2x2+4x-3. 6分
(2)因?yàn)楹瘮?shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,所以導(dǎo)函數(shù)f′(x)=-3x2-bx+b在區(qū)間[-2,0]上的值恒大于或等于零, 8分
則,得b≥4, 10分
所以實(shí)數(shù)b的取值范圍為[4+∞). 12分
22.解:(1)①當(dāng)0≤x≤1時(shí),由2(1-x)≤x 得x≥.∴≤x≤1.
②當(dāng)1<x≤2時(shí),因x-1≤x 恒成立.∴1<x≤2.
由①②得f(x)≤x 的解集為{x|≤x≤2}. 3分
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴當(dāng)x=0時(shí),f3(0)=f(f(f(0)))=f(f(2))=f(1)=0;
當(dāng) x=1時(shí),f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
當(dāng)x=2時(shí),f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即對任意x∈A,恒有f3(x)=x. 6分 (8分)
(3)f1()=2(1-)=,f2()=f(f())=f()=,f3()=f(f2())=f()=-1=,f4()=f(f3())=f()=2(1-)=,
一般地,f4k+r()=fr() (k,r∈ N*) ∴ f2007()=f3() = 9分 (12分)
(4)(理)由(1)知,f()=,∴fn()=.則f12()=.∴∈B .
由(2)知,對x=0,或1,或2,恒有f3(x)=x,∴f12(x)=f4×3(x)=x.則0,1,2∈B.
由(3)知,對x=,,,,恒有f12(x)=f4×3(x)=x,∴,,,∈B.
綜上所述,,0,1,2, ,,,∈B. ∴B中至少含有8個(gè)元素. 12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com