設(shè) (1)求點N的軌跡C的方程 查看更多

 

題目列表(包括答案和解析)

已知點

   (1)求點P的軌跡C的方程;

   (2)設(shè)是(1)中軌跡C上不同的兩點,在A,B處的曲線C的切線相交于點N,點M是線段AB的中點,求證:MN⊥x軸。

查看答案和解析>>


(1)求動點P的軌跡C的方程;
(2)設(shè)M、N是直線l上的兩個點,點E是點F關(guān)于原點的對稱點,若·=0,
求 | MN | 的最小值。

查看答案和解析>>

設(shè)動點M的坐標為(x,y)(x、y∈R),向量
a
=(x-2,y),
b
=(x+2,y),且|a|+|b|=8,
(I)求動點M(x,y)的軌跡C的方程;
(Ⅱ)過點N(0,2)作直線l與曲線C交于A、B兩點,若
OP
=
OA
+
OB
(O為坐標原點),是否存在直線l,使得四邊形OAPB為矩形,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

設(shè)P的軌跡是曲線C,滿足:點P到F(-2,0)的距離與它到直線l:x=-4的距離之比是常數(shù),又點M(2,-
2
)
在曲線C上,點N(-1,1)在曲線C的內(nèi)部.
(1)求曲線C的方程;
(2)|PN|+
2
|PF|
的最小值,并求此時點P的坐標.

查看答案和解析>>

設(shè)動點M的坐標為(x,y)(x、y∈R),向量=(x-2,y),=(x+2,y),且|a|+|b|=8,
(I)求動點M(x,y)的軌跡C的方程;
(Ⅱ)過點N(0,2)作直線l與曲線C交于A、B兩點,若(O為坐標原點),是否存在直線l,使得四邊形OAPB為矩形,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項中,只有一項符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數(shù),則

  • <em id="lh82y"></em>
    <strike id="lh82y"></strike>

      100080

      18.(12分)

         (1)馬琳勝出有兩種情況,3:1或3:2

              ………………………… 6分

         (2)

             

      分布列:    3      4     5

            P              ……………………10分

      E= ………………………………………………12分

      文科:前3次中獎的概率

      ……………………6分

      (2)在本次活動中未中獎的概率為

        (1-p)10…………………………………………………………8分

      恰在第10次中獎的概率為

      (1-p)9p………………………………………………………………10分

      ………………………………12分

      19.(12分)

      EM是平行四邊形 …… 3分

      平面PAB ……5分

      (2)過Q做QF//PA  交AD于F

       QF⊥平面ABCD

      作FH⊥AC  H為垂足

      ∠QHF是Q―AC―D的平面角……8分

      設(shè)AF=x  則

      FD=2-x

      在Rt△QFH中,

      ……10分

      ∴Q為PD中點……12分

      解法2

      (1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

       M(0,1,……………………………………3分

      是平面PAB的法向量  

          故MC//平面PAB…………5分

      (2)設(shè)

      設(shè)是平面QAC的法向量

      ………………………………9分

      為平面ACD的法向量,于是

      ∴Q為PD的中點…………………………………………12分

      20.經(jīng)分析可知第n行有3n-2個數(shù),                  理科        文科

      前n-1行有                    

      第n行的第1個數(shù)是                   2分        4分

      (1)第10行第10個數(shù)是127                      4分         7分

      (2)表中第37行、38行的第1個數(shù)分別為1927,2036

      所以2008是此表中的第37行

      第2008-1927+1=82個數(shù)                         8分         14分

      (3)不存在

      第n行第1個數(shù)是

       第n+2行最后一個數(shù)是 

                           =

      這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

                =9n+3  個數(shù)                                   10分

      這3行沒有數(shù)之和

                                12分

      此方程無正整數(shù)解.

      21.(理科14分,文科12分)                                            理科 文科

      (1)P(0,b)  M(a,0) 沒N(x,y) 由

           由                  ②

      將②代入①得曲線C的軌跡方程為 y2 = 4x                              5分 6分

      (2)點F′(-1,0)  ,設(shè)直線ly = k (x+1) 代入y2 = 4x

      k2x2+2 (k2-2)x+k2=0

                                                   7分 8分

      設(shè)A(x1y1) B(x2,y2) D(x0y0) 則

      故直線DE方程為

      令y=0 得   

      的取值范圍是(3,+∞)                                   10分 12分

      (3)設(shè)點Q的坐標為(-1,t),過點Q的切線為:yt = k (x+1)

      代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

      △=16-16k (t+k)    令

      兩切線l1,l2 的斜率k1,k2是此方程的兩根

      k1?k2=-1    故l1l2                                          14分

      22.文科:依題意                         2分

                                                       4分

                若f (x)在(-1,0)上是增函數(shù),則在(-1,1)上

                ∵的圖象是開口向下的拋物線                            6分

      解之得 t≥5                                                 12分

      理科:

      (1)

                                              2分

      x        0      (0,)         (,1)    1

                     ―         0        +

          -                  -4                -3

      所以    是減函數(shù)

              是增函數(shù)                                   4分

      的值域為[-4,-3]                              6分

      (2)

      ∵a≥1 當

      時  g (x)↓

        時  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

      任給x1∈[0,1]  f (x1) ∈[-4,-3]

      存在x0∈[0,1]  使得  g (x0) = f (x1)

      則:[1-2a3a2,-2a]=[-4,-3]                                 10分

      即 

      又a≥1  故a的取值范圍為[1,]                                

       


      同步練習冊答案