C.當(dāng)為的三等分點(diǎn)時.最小 D.當(dāng)為的三等分點(diǎn)時.最大 查看更多

 

題目列表(包括答案和解析)

如圖,點(diǎn)線段上的一個動點(diǎn),,分別以為一邊作正方形,用表示這兩個正方形的面積之和,下列判斷正確的是( 。

A.當(dāng)的中點(diǎn)時,最小                  B.當(dāng)的中點(diǎn)時,最大

C.當(dāng)的三等分點(diǎn)時,最小           D.當(dāng)的三等分點(diǎn)時,最大

查看答案和解析>>

邊長為2的等邊△ABC與等邊△DEF互相重合,將△ABC沿直線L向左平移m個單位長度,將△DEF向右也平移m個單位長度,如圖,當(dāng)C、E是線段BF的三等分點(diǎn)時,m的值為
1
2
或2
1
2
或2

查看答案和解析>>

將拋物線沿c1:y=-
3
x2+
3
沿x軸翻折,得拋物線c2,如圖所示.
(1)請直接寫出拋物線c2的表達(dá)式.
(2)現(xiàn)將拋物線C1向左平移m個單位長度,平移后得到的新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A,B;將拋物線C2向右也平移m個單位長度,平移后得到的新拋物線的頂點(diǎn)為N,與x軸交點(diǎn)從左到右依次為D,E.
①當(dāng)B,D是線段AE的三等分點(diǎn)時,求m的值;
②在平移過程中,是否存在以點(diǎn)A,N,E,M為頂點(diǎn)的四邊形是矩形的情形?若存在,請求出此時m的值;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

閱讀下列材料:
小明遇到一個問題:如圖1,正方形ABCD中,E、F、G、H分別是AB、BC、CD和DA邊上靠近A、B、C、D的n等分點(diǎn),連接AF、BG、CH、DE,形成四邊形MNPQ.求四邊形MNPQ與正方形ABCD的面積比(用含n的代數(shù)式表示).
小明的做法是:
先取n=2,如圖2,將△ABN繞點(diǎn)B順時針旋轉(zhuǎn)90゜至△CBN′,再將△ADM繞點(diǎn)D逆時針旋轉(zhuǎn)90゜至△CDM′,得到5個小正方形,所以四邊形MNPQ與正方形ABCD的面積比是
15
;
請你參考小明的做法,解決下列問題:
(1)取n=3,如圖3,四邊形MNPQ與正方形ABCD的面積比為
 
(直接寫出結(jié)果);
(2)在圖4中探究,n=4時四邊形MNPQ與正方形ABCD的面積比為
 
(在圖4上畫圖并直接寫出結(jié)果);
(3)猜想:當(dāng)E、F、G、H分別是AB、BC、CD和DA邊上靠近A、B、C、D的n等分點(diǎn)時,四邊形MNPQ與正方形ABCD的面積比為
 
(用含n的代數(shù)式表示);
(4)圖5是矩形紙片剪去一個小矩形后的示意圖,請你將它剪成三塊后再拼成正方形(在圖5中畫出并指明拼接后的正方形).
精英家教網(wǎng)

查看答案和解析>>

(2012•道里區(qū)二模)△ABC中,∠C=90°,∠A=30°,∠ABC的平分線交AC于點(diǎn)D,∠ADB繞點(diǎn)D旋轉(zhuǎn)至以∠A′DB′,當(dāng)射線DA′經(jīng)過AB的一個三等分點(diǎn)時,射線DB′直線BC于點(diǎn)E,則∠BED為
60或120
60或120
 度.

查看答案和解析>>

一.選擇題

1. D  2.A   3.C   4.B   5.A   6.D   7.A   8.A   9.B   10.A

二.填空題

11.  4(m++1)(m-+1)    12. -8   13.25cm,  

14.    15.  553   16.  10

三.解答題

17.解: ,   (2分)

             (4分)

                    (5分)

 

18.解:(1)特征1:都是軸對稱圖形;特征2:都是中心對稱圖形;特征3:這些圖形的面積都等于4個單位面積;等

(2)滿足條件的圖形有很多,只要畫正確一個,都可以得滿分.

 

 

 

19.解:(1)矩形,矩形;

或菱形;

或直角梯形等.

(2)選擇是矩形.

證明:∵ABCDEF是正六邊形,

,

同理可證

四邊形是矩形.

選擇四邊形是菱形.

證明:同理可證:,

四邊形是平行四邊形.

又∵BC=DE,,

四邊形是菱形.

選擇四邊形是直角梯形.

證明:同理可證:,,又由不平行,

得四邊形是直角梯形.

 

20.解:(1)=(萬元);

                =(萬元);  ……………………(2分)

  甲、乙兩商場本周獲利都是21萬元; ……………………………………(4分)

  (2)甲、乙兩商場本周每天獲利的折線圖如圖2所示:

  …………………………………(6分)

 。3)從折線圖上看到:乙商場后兩天的銷售情況都好于甲商場,所以,下周一乙商場獲利會多一些. ……………………………(8分)

 

 

21.解:(1)

          ??????????????????????????????????????????????????????????????????????????????????? 2分

(2)由題意得:

即購種樹不少于400棵????????????????????????????????????????????????????????????????????????????????? 5分

(3)

?????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

的增大而減小

當(dāng)時,購樹費(fèi)用最低為(元)

當(dāng)時,

此時應(yīng)購種樹600棵,種樹300棵???????????????????????????????????????????????????????? 8分

 

22.(1)樹狀圖略..(2)不公平,理由如下:法一:由樹狀圖可知,,

所以不公平.法二:從(1)中樹狀圖得知,不是5的倍數(shù)時,結(jié)果是奇數(shù)的有2種情況,而結(jié)果是偶數(shù)的有6種情況,顯然小李勝面大,所以不公平.法三:由于積是5的倍數(shù)時兩人得分相同,所以可直接比較積不是5的倍數(shù)時,奇數(shù)、偶數(shù)的概率. P(奇數(shù))=,P(偶數(shù))=,所以不公平.可將第二道環(huán)上的數(shù)4改為任一奇數(shù).(3)設(shè)小軍x次進(jìn)入迷宮中心,則2x+3(10-x)≤28,解之得x≥2.所以小軍至少2次進(jìn)入迷宮中心.

23.解:(1)∵,,

是等邊三角形.   

(2)∵CP與相切,          

又∵(4,0),∴.∴

(3)①過點(diǎn),垂足為,延長,

是半徑, ∴,∴,

是等腰三角形.

又∵是等邊三角形,∴=2 .

②解法一:過,垂足為,延長軸交于,

是圓心, ∴的垂直平分線. ∴

是等腰三角形,

過點(diǎn)軸于

中,∵,

.∴點(diǎn)的坐標(biāo)(4+,).

中,∵,

.∴點(diǎn)坐標(biāo)(2,). 

設(shè)直線的關(guān)系式為:,則有

      解得:

當(dāng)時,

 ∴. 

解法二: 過A作,垂足為,延長,軸交于,

是圓心, ∴的垂直平分線. ∴

是等腰三角形.

,∴

平分,∴

是等邊三角形,, ∴

是等腰直角三角形.

24.(1)解:

           (2分) 解得        (2分)

   (2)      (3分)

            

              (5分)

   當(dāng)      

           (7分)

   當(dāng)      

           (9分)

           (10分)

 

25.解:如圖,

(1)點(diǎn)移動的過程中,能成為的等腰三角形.

此時點(diǎn)的位置分別是:

的中點(diǎn),重合.

.③重合,的中點(diǎn).(4分)

(2)在中,

,,

,,

.(8分)

(3)相切.

,

點(diǎn)的距離相等.

相切,

點(diǎn)的距離等于的半徑.

相切.(12分)

 


同步練習(xí)冊答案