已知四棱錐的底面是正方形.且底面.其中. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知四棱錐的底面是矩形,側(cè)棱長(zhǎng)相等,棱錐的高為4,其俯視圖如圖所示.
(1)作出此四棱錐的正視圖和側(cè)視圖,并在圖中標(biāo)出相關(guān)的數(shù)據(jù);
(2)求該四棱錐的側(cè)面積S.

查看答案和解析>>

如圖,已知四棱錐的底面為等腰梯形,,,垂足為,是四棱錐的高。

(Ⅰ)證明:平面 平面;

(Ⅱ)若,60°,求四棱錐的體積。

 

查看答案和解析>>

(本小題滿(mǎn)分13分)

如圖,已知四棱錐的底面是直角梯形,∠ABC∠BCD90°,ABBCPBPC2CD2,側(cè)面PBC⊥底面ABCD。

   (1)求證:;K^S*5U.C#O%

   (2)求二面角的余弦值。

 

查看答案和解析>>

(本題滿(mǎn)分14分)本題共有2個(gè)小題,第1小題滿(mǎn)分7分,第2小題滿(mǎn)分7分.

(理科)已知四棱錐的底面是直角梯形, ,

側(cè)面為正三角形,.如圖4所示.

 

 

(1) 證明: 平面;

(2) 求四棱錐的體積

 

查看答案和解析>>

(12分)已知四棱錐 的底面是直角梯形, ∥,,側(cè)面底面.

(Ⅰ)求證:;

(Ⅱ)求二面角的正切值.

查看答案和解析>>

 

一、

<style id="ga022"></style>

      20080506

      題號(hào)

      1

      2

      3

      4

      5

      6

      7

      8

      9

      10

      11

      12

      選項(xiàng)

      A

      D

      C

      A

      A

      C

      B

      B

      C

      D

      C

      B

      二、填空題:

      13.-1    14.5   15.    16.③④      

      三、解答題:

      17.解:(Ⅰ) =……1分

      =……2分

        ……3分

       

      ……4分

        .……6分

      (Ⅱ)在中, ,

      ……7分

      由正弦定理知:……8分

      =.    ……10分

      18.解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

      6ec8aac122bd4f6e                                     ………………4分

      (Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

      6ec8aac122bd4f6e                                      …………9分

      ξ的分布列為:

      ξ

      10

      8

      6

      4

      P

      3/28

      31/56

      9/28

      1/56

      6ec8aac122bd4f6e                                …………12分

      19. 解法一:

         (1)設(shè)于點(diǎn),∵,,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

       由已知得,,

      ,二面角的大小為.…6分

         (2)當(dāng)中點(diǎn)時(shí),有平面.

      證明:取的中點(diǎn)連結(jié)、,則

      ,故平面即平面.

      ,∴,又平面,

      .…………………………………………12分

      解法二:以D為原點(diǎn),以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,則

      ,,.…………2分

         (1),,

      ,設(shè)平面的一個(gè)法向量

      ,則.

      設(shè)平面的一個(gè)法向量為,則.

      ,∴二面角的大小為. …………6分

         (2)令

       

      由已知,,要使平面,只須,即則有

      ,得,當(dāng)中點(diǎn)時(shí),有平面.…12分

      20解:(I)f(x)定義域?yàn)?一1,+∞),                        …………………2分

          由得x<一1或x>1/a,由得一1<x<1/a,

           f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

      (Ⅱ)由(I)可知:

          ①當(dāng)0<a≤1/2時(shí),,f(x)在[1,2]上為減函數(shù),

          ………………………………8分

          ②當(dāng)1/2<a<1時(shí),f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

          …………………………………10分

          ③當(dāng)a≥1時(shí),f(x)在[1,2]上為增函數(shù),

          …………………………………12分

      21.解:(1),設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,所以,

      所以

      由條件,得,又因?yàn)槭堑缺龋?/p>

      所以,所以,所求動(dòng)點(diǎn)的軌跡方程 ……………………6分

         (2)設(shè)直線l的方程為

      聯(lián)立方程組得,

      , …………………………………………8分

      , ………………………………………………10分

      直線RQ的方程為

        …………………………………………………………………12分

      22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

      ,

              兩式相減得.                --------------------3分

              當(dāng)時(shí),,

      .            --------------------------------------------------4分

      (Ⅱ)∵,

      ,

             ,

        ,

        ………

       

      以上各式相加得

      .

        ,∴.      ---------------------------6分

      .     -------------------------------------------------7分

      ,

      .

      .

               =.

      .  -------------------------------------------------------------9分

      (3)=

                          =4+

         =

                          .  -------------------------------------------10分

              ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

              ①當(dāng)時(shí),成立.

              ②假設(shè)時(shí),命題成立即,

              那么,當(dāng)時(shí),成立.

              由①、②可得,對(duì)于都有成立.

             ∴.       ∴.--------------------12分

       


      同步練習(xí)冊(cè)答案