即對(duì)一切有:. 查看更多

 

題目列表(包括答案和解析)

已知,函數(shù)

(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線(xiàn)方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí),  又    所以函數(shù)在點(diǎn)(1,)的切線(xiàn)方程為;(2)中令   有 

對(duì)a分類(lèi)討論,和得到極值。(3)中,設(shè),依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當(dāng)時(shí),  又    

∴  函數(shù)在點(diǎn)(1,)的切線(xiàn)方程為 --------4分

(Ⅱ)令   有 

①         當(dāng)時(shí)

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當(dāng)時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。 

綜上所述   時(shí),極大值為,無(wú)極小值

時(shí)  極大值是,極小值是        ----------8分

(Ⅲ)設(shè),

對(duì)求導(dǎo),得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實(shí)數(shù)的取值范圍是(

 

查看答案和解析>>

解答題:解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟

過(guò)點(diǎn)P(1,0)作曲線(xiàn)C:y=x2(x∈(0,+∞))的切線(xiàn),切點(diǎn)為Q1,設(shè)點(diǎn)Q1在x軸上的投影為P1(即過(guò)點(diǎn)Q1作x軸的垂線(xiàn),垂足為P1),又過(guò)點(diǎn)P1作曲線(xiàn)C的切線(xiàn),切點(diǎn)為Q2,設(shè)點(diǎn)Q2在x軸上的投影為P2,…,依次下去,得到一系列點(diǎn)Q1,Q2,Q3,…,Qn,…,設(shè)點(diǎn)Qn的橫坐標(biāo)為an,n∈N*

(1)

求數(shù)列{an}的通項(xiàng)公式;

(2)

比較an的大小,并證明你的結(jié)論;

(3)

設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,求證:對(duì)任意的正整數(shù)n均有≤Sn<2.

查看答案和解析>>

給出下列四個(gè)命題:
①“向量的夾角為銳角”的充要條件是“·>0”;
②如果f(x)=lgx,則對(duì)任意的x1、x2Î(0,+¥),且x1¹x2,都有f()>;
③設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意xÎ[a,b],都有|f(x)?g(x)|£1成立,則稱(chēng)f(x)和g(x)在[a,b]上是“密切函數(shù)”,區(qū)間[a,b]稱(chēng)為“密切區(qū)間”.若f(x)=x2?3x+4與g(x)=2x?3在[a,b]上是“密切函數(shù)”,則其“密切區(qū)間”可以是[2,3];
④記函數(shù)y=f(x)的反函數(shù)為y=f?1(x),要得到y(tǒng)=f?1(1?x)的圖象,可以先將y=f(x)的圖象關(guān)于直線(xiàn)y=x做對(duì)稱(chēng)變換,再將所得的圖象關(guān)于y軸做對(duì)稱(chēng)變換,再將所得的圖象沿x軸向左平移1個(gè)單位,即得到y(tǒng)=f?1(1?x)的圖象.其中真命題的序號(hào)是           。(請(qǐng)寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l交于A(yíng)、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓

C過(guò)F的切線(xiàn)交于點(diǎn)P和點(diǎn)Q,則P、Q必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.

(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;

(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:

“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于P、Q兩點(diǎn),

則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)

問(wèn):此命題是否正確?試證明你的判斷;

(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并

證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為評(píng)分依據(jù))

查看答案和解析>>

如圖,F(xiàn)是定直線(xiàn)l外的一個(gè)定點(diǎn),C是l上的動(dòng)點(diǎn),有下列結(jié)論:若以C為圓心,CF為半徑的圓與l交于A(yíng)、B兩點(diǎn),過(guò)A、B分別作l的垂線(xiàn)與圓

C過(guò)F的切線(xiàn)交于點(diǎn)P和點(diǎn)Q,則P、Q必在以F為焦點(diǎn),l為準(zhǔn)線(xiàn)的同一條拋物線(xiàn)上.
(Ⅰ)建立適當(dāng)?shù)淖鴺?biāo)系,求出該拋物線(xiàn)的方程;
(Ⅱ)對(duì)以上結(jié)論的反向思考可以得到另一個(gè)命題:
“若過(guò)拋物線(xiàn)焦點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于P、Q兩點(diǎn),
則以PQ為直徑的圓一定與拋物線(xiàn)的準(zhǔn)線(xiàn)l相切”請(qǐng)
問(wèn):此命題是否正確?試證明你的判斷;
(Ⅲ)請(qǐng)選擇橢圓或雙曲線(xiàn)之一類(lèi)比(Ⅱ)寫(xiě)出相應(yīng)的命題并
證明其真假.(只選擇一種曲線(xiàn)解答即可,若兩種都選,則以第一選擇為評(píng)分依據(jù))

查看答案和解析>>


同步練習(xí)冊(cè)答案