(Ⅱ)求平面與平面所成的銳二面角的余弦值. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥平面ABC,AB=2,BD=1,AF=2,CE=3,O為AB的中點(diǎn).
(Ⅰ)求平面DEF與平面ABC相交所成銳角二面角的余弦值;
(Ⅱ)在DE上是否存在一點(diǎn)P,使CP⊥平面DEF?如果存在,求出DP的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,平面EACF⊥平面ABC,△ABC為邊長(zhǎng)為a的正三角形,四邊形ACFE為正方形,點(diǎn)M在線段EF上,點(diǎn)D為AC的中點(diǎn).
(1)求證:BD⊥平面EACF;
(2)當(dāng)M在線段EF的什么位置時(shí),AM∥平面BDF,并證明你的結(jié)論;
(3)求平面EFB與平面ABC所成的銳二面角的正切值.

查看答案和解析>>

如圖,平面PAC⊥平面ABC,AC⊥BC,△PAC為等邊三角形,PE∥CB,M,N分別是線段AE,AP上的動(dòng)點(diǎn),且滿足:
AM
AE
=
AN
AP
=λ(0<λ<1).
(Ⅰ)求證:MN∥平面ABC;
(Ⅱ)求λ的值,使得平面ABC與平面MNC所成的銳二面角的大小為45°.

查看答案和解析>>

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA⊥
平面ABC,AB=2,AF=2,CE=3,BD=1,O為BC的中點(diǎn).
(1)求證:AO∥平面DEF;
(2)求證:平面DEF⊥平面BCED;
(3)求平面DEF與平面ABC相交所成銳角二面角的余弦值.

查看答案和解析>>

如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截面得,已知FA⊥平面ABC,AB=2,BD=1,AF=2, CE=3,O為AB的中點(diǎn).

(1)求證:OC⊥DF;

(2)求平面DEF與平面ABC相交所成銳二面角的大。

(3)求多面體ABC—FDE的體積V.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案