注:直接運(yùn)用半角公式求tg.將會錯選(A).若直接計算.由()2+()2=1.可得m=0或m=8.∵ <q <p. ∴ sinq >0.cosq <0.故應(yīng)舍去m=0.取m=8.得sinq =.cosq =,再由半角公式求出tg==5,也不如上述解法簡捷. 查看更多

 

題目列表(包括答案和解析)

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,求.

【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

(1)問中∵,∴,…………………1分

,得到三角關(guān)系是,結(jié)合,解得。

(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,,5分

     ……………6分

(Ⅱ)∵,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知 .                …………9分

             ……………10分

,且注意到

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC、AD的中點(diǎn).

(1)求證:DE∥平面PFB;

(2)已知二面角P-BF-C的余弦值為,求四棱錐P-ABCD的體積.

【解析】(1)證:DE//BF即可;

(2)可以利用向量法根據(jù)二面角P-BF-C的余弦值為,確定高PD的值,即可求出四棱錐的體積.也可利用傳統(tǒng)方法直接作出二面角的平面角,求高PD的值也可.在找平面角時,要考慮運(yùn)用三垂線或逆定理.

 

查看答案和解析>>

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點(diǎn)F的直線l與C相交于A、B

 
            

兩點(diǎn),當(dāng)l的斜率為1時,坐標(biāo)原點(diǎn)O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運(yùn)用能力,第一問直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

查看答案和解析>>

(2009全國卷Ⅱ文)(本小題滿分12分)

已知橢圓C:                    的離心率為      ,過右焦點(diǎn)F的直線l與C相交于A、B

 
            

兩點(diǎn),當(dāng)l的斜率為1時,坐標(biāo)原點(diǎn)O到l的距離為

 

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由。

解析:本題考查解析幾何與平面向量知識綜合運(yùn)用能力,第一問直接運(yùn)用點(diǎn)到直線的距離公式以及橢圓有關(guān)關(guān)系式計算,第二問利用向量坐標(biāo)關(guān)系及方程的思想,借助根與系數(shù)關(guān)系解決問題,注意特殊情況的處理。

查看答案和解析>>

已知,,求的值

【解析】本試題主要考查了三角函數(shù)的二倍角公式的運(yùn)用。利用同角三角函數(shù)關(guān)系式可知

,所以,再利用二倍角正切公式

得到結(jié)論。

解:(Ⅰ)

  

 

查看答案和解析>>


同步練習(xí)冊答案