①不存在實(shí)數(shù)使的定義域.值域均為一切實(shí)數(shù), 查看更多

 

題目列表(包括答案和解析)

給出下列命題:

①不存在實(shí)數(shù)使的定義域、值域均為一切實(shí)數(shù);

②函數(shù)圖象與函數(shù)圖象關(guān)于直線對稱;

③方程有且只有一個(gè)實(shí)數(shù)根;

是方程表示圓的充分不必要條件.

其中真命題的序號是    .(寫出所有真命題的序號)

查看答案和解析>>

對于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對任意的x1∈D,存在唯一的x2∈D滿足等式
f(x1)+f(x2)2
=M
,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請說明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).

查看答案和解析>>

對于定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/94/5/1kxho2.gif" style="vertical-align:middle;" />的函數(shù),若有常數(shù)M,使得對任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.
(1)判斷1是否為函數(shù)的“均值”,請說明理由;
(2)若函數(shù)為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).
說明:對于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評分

查看答案和解析>>

對于定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209445829682376/SYS201205220947168125476025_ST.files/image001.png">的函數(shù),若有常數(shù)M,使得對任意的,存在唯一的滿足等式,則稱M為函數(shù)f (x)的“均值”.

(1)判斷1是否為函數(shù)的“均值”,請說明理由;

(2)若函數(shù)為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;

(3)若函數(shù)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).

說明:對于(3),將根據(jù)結(jié)論的完整性與一般性程度給予不同的評分

 

查看答案和解析>>

對于定義域?yàn)镈的函數(shù)y=f(x),若有常數(shù)M,使得對任意的x1∈D,存在唯一的x2∈D滿足等式數(shù)學(xué)公式,則稱M為函數(shù)y=f (x)的“均值”.
(1)判斷1是否為函數(shù)f(x)=2x+1(-1≤x≤1)的“均值”,請說明理由;
(2)若函數(shù)f(x)=ax2-2x(1<x<2,a為常數(shù))存在“均值”,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)f(x)是單調(diào)函數(shù),且其值域?yàn)閰^(qū)間I.試探究函數(shù)f(x)的“均值”情況(是否存在、個(gè)數(shù)、大小等)與區(qū)間I之間的關(guān)系,寫出你的結(jié)論(不必證明).

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

13.80  14.32  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分

(2)∵成等比數(shù)列   ∴  又

  ……………………………………4分

又∵     ∴       ……………………………………………………10分

  ……………………………………12分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

………………………………………………6分

(2) ∵               ………………………………………………7分

…①      …………8分

 …………②       …………9分

①-②得:

            

                ………………………………………………12分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則

        ………………………………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分

(2)過,連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說明:若用空間向量解,請參照給分)

21.解:(1) ……2分

①當(dāng)時(shí),內(nèi)是增函數(shù),故無最小值………………………3分

②當(dāng)時(shí),

 

 

 

 

處取得極小值    ………………………5分

   

由                     解得:  ∴ …………6分

(2)由(1)知在區(qū)間上均為增函數(shù)

,故要在內(nèi)為增函數(shù)

                  

必須:                或                    ………………………………………10分

                 

  ∴實(shí)數(shù)的取值范圍是:…………………12分

22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)

…3分

  ∴ ………4分

的離心率為

 …………………………………………………………6分

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

點(diǎn)處拋物線的切線斜率 ……………………………………………………8分

則切線方程為:……………………………………………………9分

又∵過點(diǎn)  ∴  ∴  ∴

代入橢圓方程得:    ……………………………………………………11分

  ………………13分

                  

當(dāng)且僅當(dāng)                 即           上式取等號

                    

∴此時(shí)橢圓的方程為:       ………………………………………………14分

 

 

 

 


同步練習(xí)冊答案