15.如圖5.在△ABC中.∠C=90°,∠B=60°,D是AC上一點.于,且則的長為: 查看更多

 

題目列表(包括答案和解析)

如圖1,在△ABC中,∠ACB=90°,AC=3,BC=4,將△ABC繞頂點C順時針旋轉(zhuǎn)30°,得到△A′B′C.連接A′A、B′B,設△ACA′和△BCB′的面積分別為S△ACA和S△BCB

(1)直接寫出S△ACA′:S△BCB′的值
9:16
9:16
;
(2)如圖2,當旋轉(zhuǎn)角為θ(0°<θ<180°)時,S△ACA′與S△BCB′的比值是否發(fā)生變化,若不變請證明;若改變,寫出變化后的比值(可用含θ的代數(shù)式表示).

查看答案和解析>>

33、如圖1,在△ABC中,∠BAC=90°,AB=AC,AE是過A的一條直線,且B,C在AE的異側(cè),BD⊥AE于點D,CE⊥AE于點E.
(1)求證:BD=DE+CE;
(2)若直線AE繞點A旋轉(zhuǎn)到圖2位置時(BD<CE),其余條件不變,問BD與DE,CE的關系如何,請證明;
(3)若直線AE繞點A旋轉(zhuǎn)到圖3時(BD>CE),其余條件不變,BD與DE,CE的關系怎樣?請直接寫出結(jié)果,不須證明.
(4)歸納(1),(2),(3),請用簡捷的語言表述BD與DE,CE的關系.

查看答案和解析>>

操作探究:
我們知道一個三角形中有三條高線和三條中線.如圖1,AD和AE分別是△ABC中BC邊上的高線和中線,我們規(guī)定:kA=
DE
BE
,另外,對kB、kC作類似的規(guī)定.
(1)如圖2,在△ABC中,∠C=90°,∠A=30°,則kA的值為
1
1
,kC的值為
1
2
1
2
;
(2)在每個小正方形邊長均為1的4×4的方格紙上(如圖3),畫一個△ABC,使其頂點在格點(格點即每個小正方形的頂點)上,且kA=2,面積也為2;
(3)判斷下面三個命題的真假(真命題打“√”,假命題的打“×”)
①若△ABC中,kA<1,則△ABC為銳角三角形
×
×
;
②若△ABC中,kA=1,則△ABC為直角三角形
;
③若△ABC中,kA>1,則△ABC為鈍角三角形

查看答案和解析>>

(2013•集美區(qū)一模)(1)計算:
9
-|-2|+(
π
3
)0

(2)如圖1,畫出△ABC關于BC對稱的圖形;
(3)如圖2,在△ABC中,∠C=90°,sinA=
2
3
,AB=6,求BC的長.

查看答案和解析>>

我們知道三角形的一條中線能將這個三角形分成面積相等的兩個三角形,反之,若經(jīng)過三角形的一個頂點引一條直線將這個三角形分成面積相等兩個三角形,那么這條直線平分三角形的這個頂點的對邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請你直接應用上述結(jié)論解決以下問題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點C落在點E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問線段AE與線段BD有什么關系?在圖中按要求畫出圖形,并說明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點D是AB邊的中點,點P是BC邊上的任意一點,連接PD,沿PD翻折△ADP,使點A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.

查看答案和解析>>


同步練習冊答案