【題目】把一枚六個(gè)面編號分別為1,2,3,4,5,6的質(zhì)地均勻的正方體骰子先后投擲2次,若兩個(gè)正面朝上的編號分別為m,n,則二次函數(shù)的圖象與x軸有兩個(gè)不同交點(diǎn)的概率是( ).
A. B. C. D.
【答案】C
【解析】
本題可先列出出現(xiàn)的點(diǎn)數(shù)的情況,因?yàn)槎螆D象開口向上,要使圖象與x軸有兩個(gè)不同的交點(diǎn),則最低點(diǎn)要小于0,即4n-m2<0,再把m、n的值一一代入檢驗(yàn),看是否滿足.最后把滿足的個(gè)數(shù)除以擲骰子可能出現(xiàn)的點(diǎn)數(shù)的總個(gè)數(shù)即可.
解答:解:擲骰子有6×6=36種情況.
根據(jù)題意有:4n-m2<0,
因此滿足的點(diǎn)有:n=1,m=3,4,5,6,
n=2,m=3,4,5,6,
n=3,m=4,5,6,
n=4,m=5,6,
n=5,m=5,6,
n=6,m=5,6,
共有17種,
故概率為:17÷36=.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的正方形,以點(diǎn)A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點(diǎn)E,F(xiàn),G.
(1)求點(diǎn)D沿三條圓弧運(yùn)動到點(diǎn)G所經(jīng)過的路線長;
(2)判斷線段GB與DF的長度關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E、F、G、H分別是四邊形ABCD邊AB、BC、CD、AD的中點(diǎn),下列說法正確的是( )
A.當(dāng)AC⊥BD時(shí),四邊形EFGH是菱形
B.當(dāng)AC=BD時(shí),四邊形EFGH是矩形
C.當(dāng)四邊形ABCD是平行四邊形時(shí),則四邊形EFGH是矩形
D.當(dāng)四邊形ABCD是矩形時(shí),則四邊形EFGH是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左邊), 點(diǎn)P在拋物線上.
(1)點(diǎn)C是x軸上一個(gè)動點(diǎn),四邊形ACPQ是正方形,則滿足條件 的點(diǎn)Q的坐標(biāo)是______.
(2)連結(jié)AP,以AP為一條對角線作平行四邊形AMPN,使點(diǎn)M在 以點(diǎn)(1,0),(0,1)為端點(diǎn)的線段上,則當(dāng)點(diǎn)N的縱坐標(biāo)取最小值時(shí),N的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),且AG=AB、CG的延長線交BA的延長線于點(diǎn)F,連接FD.試探究當(dāng)∠BCD= °時(shí),四邊形ACDF是矩形,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游景點(diǎn)門票是50元,凡購買5張門票以上(含5張),景點(diǎn)售票處推出兩種優(yōu)惠銷售辦法,第一種:“3張按原價(jià),其余按原價(jià)的七折優(yōu)惠”;第二種:“全部按原價(jià)的八折優(yōu)惠”.
問:(1)購買門票張數(shù)在什么范圍選用第二種優(yōu)惠辦法;
(2)若購10張門票,則選用哪種方法費(fèi)用較少(請寫出理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.
(1)請判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)已知AD=5,CD=4,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com