【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F. 若AB=6,BC=,則FD的長為( )
A. 2B. 4C. 6D. 23
【答案】B
【解析】
根據(jù)點E是AD的中點以及翻折的性質(zhì)可以求出AE=DE=EG,然后利用“HL”證明△EDF和△EGF全等,根據(jù)全等三角形對應(yīng)邊相等可證得DF=GF;設(shè)FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式進行計算即可得解.
∵E是AD的中點,
∴AE=DE,
∵△ABE沿BE折疊后得到△GBE,
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
∵在Rt△EDF和Rt△EGF中,
,
∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
設(shè)DF=x,則BF=6+x,CF=6-x,
在Rt△BCF中,(4)2+(6-x)2=(6+x)2,
解得x=4,
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】請你認真閱讀下面的小探究系列,完成所提出的問題.
(1)如圖1,將角尺放在正方形ABCD上,使角尺的直角頂點E與正方形ABCD的頂點D重合,角尺的一邊交CB于點F,將另一邊交BA的延長線于點G.求證:EF=EG.
(2)如圖2,移動角尺,使角尺的頂點E始終在正方形ABCD的對角線BD上,其余條件不變,請你思考后直接回答EF和EG的數(shù)量關(guān)系:EF EG(用“=”或“≠”填空)
(3)運用(1)(2)解答中所積累的活動經(jīng)驗和數(shù)學知識,完成下題:如圖3,將(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一邊經(jīng)過點A(即點G、A重合),其余條件不變,若AB=4,BC=3,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.
(1)求證:BE=DF;
(2)連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了統(tǒng)計知識后,數(shù)學老師請數(shù)學興趣小組的同學就本班同學的上學方式進行了一次調(diào)查統(tǒng)計.如圖甲乙是數(shù)學興趣小組的同學們通過手機和整理數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,解答一下的問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所應(yīng)對的圓心角的度數(shù).
(2)請問該班共有多少名學生?
(3)在圖中將表示“乘車”的部分補充完整.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校要開展校園藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調(diào)查(每名學生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了_________名學生.
(2)在扇形統(tǒng)計圖中,“歌曲”所在扇形的圓心角等于_________度.
(3)補全條形統(tǒng)計圖(并標注頻數(shù)).
(4)根據(jù)以上統(tǒng)計分析,估計該校2000名學生中最喜愛小品的人數(shù)約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的一個內(nèi)角是60,將它繞對角線的交點O順時針旋轉(zhuǎn)90后得到菱形A′B′C′D′.旋轉(zhuǎn)前后兩菱形重疊部分多邊形的周長為,則菱形ABCD的邊長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=﹣2x﹣3的圖象與反比例函數(shù)y=(m≠0)的圖象相交于點A(﹣2,1)和點B.
(1)求反比例函數(shù)的解析式;
(2)求點B的坐標;
(3)根據(jù)圖象回答:當x在什么范圍內(nèi)取值時,一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(0,a)、B(b,0).
(1)若a、b滿足a2+b2﹣8a﹣4b+20=0.如圖,在第一象限內(nèi)以AB為斜邊作等腰Rt△ABC,請求四邊形AOBC的面積S;
(2)如圖,若將線段AB沿x軸向正方向移動a個單位得到線段DE(D對應(yīng)A,E對應(yīng)B)連接DO,作EF⊥DO于F,連接AF、BF,判斷AF與BF的關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com