(8分)小平所在的學習小組發(fā)現(xiàn),車輛轉彎時,能否順利通過直角彎道的標圖2是某巷子的俯視圖,巷子路面寬4 m,轉彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時,連接EF,交CD于點G,若GF的長度至少能達到車身寬度,即車輛能通過.
(1)小平認為長8m,寬3m的消防車不能通過該直角轉彎,請你幫他說明理由;
為半徑的。L8m,寬3m的消防車就可以通過該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時,這種消防車可以通過該巷子,?
解:(1)作FH⊥EC,垂足為H,

∵FH=EH=4,
∴EF=4.且∠GEC=45°,
∵GC=4,
∴GE=GC=4.
∴GF=4-4<3,即GF的長度未達到車身寬度,
∴消防車不能通過該直角轉彎.                       ………………………3分
(2)若C、D分別與M′、M重合,則△OGM為等腰直角三角形.
∴OG=4,OM=4,
∴OF=ON=OM-MN=4-4.

(以上未說明不扣分)                                           
設ON= x,連接OC.在Rt△OCG中,

OG=x+3,OC=x+4,CG=4,由勾股定理得
OG2+CG2=OC2,即(x+3)2+42=(x+4)2.…………………………6分
解得  x=4.5  …………………………7分
答:ON至少為4.5米…………………………8分
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,,,則的度數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,為半圓的直徑,延長到點,使,切半圓于點,點是弧AC上和點不重合的一點,則的度數(shù)為    .(圓的性質、切線的性質、解三角形)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O1的半徑為3cm,⊙O2的半徑為5cm,圓心距O1O2為2cm,則⊙O1和⊙O2的位置關系是  (   )
A.相交B.外離C.外切D.內切

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

芳芳家今年搬進了新房,新房外飄的涼臺呈圓弧形(如圖5所示),她測得涼臺
的寬度AB為8m,涼臺的最外端C點離AB的距離CD為2m,則涼臺所在圓的半徑
             

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點C′與半圓上的點C關于直徑AB成軸對稱.若∠AOC=40°,則∠CC′B
 ▲ °.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,的直徑,弦,是弦的中點,.若動點的速度從點出發(fā)沿著方向運動,設運動時間為,連結,當是直角三角形時,(s)的值為
A.B.1C.或1D.或1 或

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分,第(1)題7分,第(2)題5分)
如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點G.
(1)證明:直線FC與⊙O相切;
(2)若,求證:四邊形OCBD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在正方形鐵皮上剪下一個圓和扇形(圓與扇形外切,且與正方形的邊相切),
使之恰好圍成如圖所示的一個圓錐模型,設圓半徑為,扇形半徑為R,則R與的關系是  (   )
A.R=2rB.R="4r"
C.R=2πrD.R=4πr

查看答案和解析>>

同步練習冊答案