【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)EF分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BFDE相交于點(diǎn)G,連接CGBD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:①△AED≌△DFBS四邊形BCDG=;AF=2DF,則BG=6GFCGBD一定不垂直;⑤∠BGE的大小為定值.

其中正確的結(jié)論個(gè)數(shù)為( )

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】試題分析:①∵ABCD為菱形,∴AB=AD,∵AB=BD∴△ABD為等邊三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)正確;

②∵∠BGE=BDG+DBF=BDG+GDF=60°=BCD,即BGD+BCD=180°,點(diǎn)BC、D、G四點(diǎn)共圓,∴∠BGC=BDC=60°,DGC=DBC=60°,∴∠BGC=DGC=60°,過(guò)點(diǎn)CCMGBM,CNGDN(如圖1),則CBM≌△CDNAAS),S四邊形BCDG=S四邊形CMGN,S四邊形CMGN=2SCMG∵∠CGM=60°,GM=CG,CM=CG,S四邊形CMGN=2SCMG=2××CG×CG=,故本選項(xiàng)錯(cuò)誤;

過(guò)點(diǎn)FFPAEP點(diǎn)(如圖2),AF=2FDFPAE=DFDA=13,AE=DF,AB=ADBE=2AE,FPBE=FPAE=16FPAE,PFBE,FGBG=FPBE=16,即BG=6GF,故本選項(xiàng)正確;

當(dāng)點(diǎn)E,F分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形,點(diǎn)E,F分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC△BGC中,∵DG=BG,CG=CGCD=CB,∴△GDC≌△BGC∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;

⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;

綜上所述,正確的結(jié)論有①③⑤,共3個(gè),故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽(tīng)寫大賽,學(xué)校對(duì)兩位選手從表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫四個(gè)方面做了測(cè)試,他們各自的成績(jī)(百分制)如下表:

選手

表達(dá)能力

閱讀理解

綜合素質(zhì)

漢字聽(tīng)寫

85

78

85

73

73

80

82

83

1)由表中成績(jī)已算得甲的平均成績(jī)?yōu)?/span>80.25,請(qǐng)計(jì)算乙的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí);

2)如果表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫分別賦予它們20%、10%、30%和40%的權(quán)重,請(qǐng)分別計(jì)算兩名選手的最終成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且ABAE,延長(zhǎng)ABDE的延長(zhǎng)線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③ADAF;④SABESCDE;⑤SABESCEF.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;

(3)過(guò)原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時(shí),因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時(shí)到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖,結(jié)合圖象信息解答下列問(wèn)題:

1)乙車的速度是   千米/時(shí),t  小時(shí);

2)求甲車距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

3)直接寫出乙車出發(fā)多長(zhǎng)時(shí)間兩車相距120千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.

1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?

2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?

3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬(wàn)元(a0),市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題

快放寒假了小宇來(lái)到書店準(zhǔn)備購(gòu)買一些課外讀物在假期里閱讀.在選完書結(jié)賬時(shí),收銀員告訴小宇,如果花20元辦理一張會(huì)員卡,用會(huì)員卡結(jié)賬買書,可以享受8折優(yōu)惠.小宇心算了一下覺(jué)得這樣可以節(jié)省13,很合算,于是采納了收銀員的意見(jiàn).請(qǐng)根據(jù)以上信息解答下列問(wèn)題

1)你認(rèn)為小宇購(gòu)買 元以上的書,辦卡就合算了;

2)小宇購(gòu)買這些書的原價(jià)是多少元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過(guò)對(duì)角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時(shí),求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小蟲從某點(diǎn)出發(fā)在一直線上來(lái)回爬行,假定向右爬行的路程記為正,向左爬行的路程記為負(fù),爬過(guò)的路程依次為(單位:cm):+5-3,+10,-8-6,+12-10.問(wèn):

1)小蟲離開(kāi)出發(fā)點(diǎn)最遠(yuǎn)是多少厘米?

2)小蟲最后是否回到原點(diǎn)

3)在爬行過(guò)程中看,如果每爬行1cm獎(jiǎng)勵(lì)2粒芝麻,則小蟲共可得到多少粒芝麻?

查看答案和解析>>

同步練習(xí)冊(cè)答案