【題目】為了豐富同學(xué)們的知識(shí),拓展閱讀視野,學(xué)習(xí)圖書(shū)館購(gòu)買(mǎi)了一些科技、文學(xué)、歷史等書(shū)籍,進(jìn)行組合搭配成、、三種套型書(shū)籍,發(fā)放給各班級(jí)的圖書(shū)角供同學(xué)們閱讀,已知各套型的規(guī)格與價(jià)格如下表:
套型 | 套型 | 套型 | |
規(guī)格(本/套) | 12 | 9 | 7 |
價(jià)格(元/套) | 200 | 150 | 120 |
(1)已知搭配、兩種套型書(shū)籍共15套,需購(gòu)買(mǎi)書(shū)籍的花費(fèi)是2120元,問(wèn)、兩種套型各多少套?
(2)若圖書(shū)館用來(lái)搭配的書(shū)籍共有2100本,現(xiàn)將其搭配成、兩種套型書(shū)籍,這兩種套型的總價(jià)為30750元,求搭配后剩余多少本書(shū)?
(3)若圖書(shū)館用來(lái)搭配的書(shū)籍共有122本,現(xiàn)將其搭配成、、三種套型書(shū)籍共13套,且沒(méi)有剩余,請(qǐng)求出所有搭配的方案.
【答案】(1)種4套,種11套;(2)剩下的書(shū)籍為255本;(3)或.
【解析】
(1)設(shè)A種套型有套,C種套型有套,根據(jù)兩種書(shū)籍共15套及購(gòu)買(mǎi)書(shū)籍的花費(fèi)是2120元列方程組求解可得;
(2)設(shè)A中書(shū)籍m套、B種書(shū)籍n套,由兩種套型的總價(jià)為30750元,得出,
根據(jù)搭配A、B兩種套型書(shū)籍需要書(shū)籍求解可得;
(3)設(shè)A種書(shū)籍套,B種書(shū)籍套,C種書(shū)籍 套,根據(jù)用來(lái)搭配的書(shū)籍共有122本得,又,消去,依據(jù)均為非負(fù)整數(shù)求解可得.
(1)設(shè)、兩種套型各為,套
則有,解得,即種4套,種11套
(2)設(shè)、兩種套型各為、套,則有,,所以可得搭配書(shū)的總量,所以剩下的書(shū)籍為255本
(3)設(shè)、、三種套型各為、、套,
則有,消去得,即.
又,均為非負(fù)整數(shù),則可得或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)M和圖形W1,W2給出如下定義:點(diǎn)P為圖形W1上一點(diǎn),點(diǎn)Q為圖形W2上一點(diǎn),當(dāng)點(diǎn)M是線(xiàn)段PQ的中點(diǎn)時(shí),稱(chēng)點(diǎn)M是圖形W1,W2的“中立點(diǎn)”.如果點(diǎn)P(x1,y1),Q(x2,y2),那么“中立點(diǎn)”M的坐標(biāo)為(,).
已知,點(diǎn)A(-3,0),B(0,4),C(4,0).
(1)連接BC,在點(diǎn)D(,0),E(0,1),F(0,)中,可以成為點(diǎn)A和線(xiàn)段BC的“中立點(diǎn)”的是______;
(2)已知點(diǎn)G(3,0),⊙G的半徑為2,如果直線(xiàn)y=-x+1存在點(diǎn)K可以成為點(diǎn)A和⊙G的“中立點(diǎn)”,求點(diǎn)K的坐標(biāo);
(3)以點(diǎn)C為圓心,半徑為2作圓,點(diǎn)N為直線(xiàn)y=2x+4上的一點(diǎn),如果存在點(diǎn)N,使得y軸上的一點(diǎn)可以成為點(diǎn)N與⊙C的“中立點(diǎn)”,直接寫(xiě)出點(diǎn)N的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)函數(shù)和,若對(duì)于每個(gè)使函數(shù)有意義的實(shí)數(shù),函數(shù)的值為兩個(gè)函數(shù)值中的較小的數(shù),則稱(chēng)函數(shù)為這兩個(gè)函數(shù)的較小值函數(shù).例如:,則的較小值函數(shù)為
(1)函數(shù)是函數(shù)的較小值函數(shù).
①在如圖的平面直角坐標(biāo)系中兩出函數(shù)的圖象.
②求函數(shù)的圖象與軸的交點(diǎn)坐標(biāo).
(2)函數(shù)是函數(shù)的較小值函數(shù).
①寫(xiě)出函數(shù)的兩條性質(zhì).
②當(dāng)時(shí),函數(shù)值的取值范圍為.當(dāng)取某個(gè)范圍內(nèi)的任意值時(shí),為定值,直接寫(xiě)出滿(mǎn)足條件的的取值范圍及其對(duì)應(yīng)的的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐﹣四邊形旋轉(zhuǎn)中的數(shù)學(xué)
“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動(dòng)中研究了一個(gè)問(wèn)題,請(qǐng)幫他們解答.
任務(wù)一:如圖1,在矩形ABCD中,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點(diǎn),四邊形AEGF為矩形,連接CG.
(1)請(qǐng)直接寫(xiě)出CG的長(zhǎng)是______.
(2)如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)(比如順時(shí)針旋轉(zhuǎn))至點(diǎn)G落在邊AB上時(shí),請(qǐng)計(jì)算DF與CG的長(zhǎng),通過(guò)計(jì)算,試猜想DF與CG之間的數(shù)量關(guān)系.
(3)當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時(shí),(2)中DF與CG之間的數(shù)量關(guān)系是否還成立?請(qǐng)說(shuō)明理由.
任務(wù)二:“智慧”數(shù)學(xué)小組對(duì)圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,∠B=60°,AB=6,AD=8,E,F(xiàn)分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接CG.“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著特定的數(shù)量關(guān)系.
(4)如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)(比如順時(shí)針旋轉(zhuǎn)),其他條件不變時(shí),“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DF與CG仍然存在著這一特定的數(shù)量關(guān)系.請(qǐng)你直接寫(xiě)出這個(gè)特定的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD是對(duì)角線(xiàn),△ABC是等邊三角形.線(xiàn)段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段CE,連接AE.
(1)求證:AE=BD;
(2)若∠ADC=30°,AD=3,BD=4.求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交x軸于點(diǎn)A,B,交y軸于點(diǎn)C,當(dāng)紙片上的C沿著此拋物線(xiàn)運(yùn)動(dòng)時(shí),則紙片隨之也跟著水平移動(dòng),設(shè)紙片上CB的中點(diǎn)M坐標(biāo)為,在此運(yùn)動(dòng)過(guò)程中,n與m的關(guān)系式是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新型高科技商品,每件的售價(jià)比進(jìn)價(jià)多6元,5件的進(jìn)價(jià)相當(dāng)于4件的售價(jià),每天可售出200件,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件商品漲價(jià)1元,每天就會(huì)少賣(mài)5件.
(1)該商品的售價(jià)和進(jìn)價(jià)分別是多少元?
(2)設(shè)每天的銷(xiāo)售利潤(rùn)為w元,每件商品漲價(jià)x元,則當(dāng)售價(jià)為多少元時(shí),該商品每天的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)為多少元?
(3)為增加銷(xiāo)售利潤(rùn),營(yíng)銷(xiāo)部推出了以下兩種銷(xiāo)售方案:方案一:每件商品漲價(jià)不超過(guò)8元;方案二:每件商品的利潤(rùn)至少為24元,請(qǐng)比較哪種方案的銷(xiāo)售利潤(rùn)更高,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①拋物線(xiàn)y=﹣x2+(m﹣1)x+m與直線(xiàn)y=kx+k交于點(diǎn)A、B,其中A點(diǎn)在x軸上,它們與y軸交點(diǎn)分別為C和D,P為拋物線(xiàn)的頂點(diǎn),且點(diǎn)P縱坐標(biāo)為4,拋物線(xiàn)的對(duì)稱(chēng)軸交直線(xiàn)于點(diǎn)Q.
(1)試用含k的代數(shù)式表示點(diǎn)Q、點(diǎn)B的坐標(biāo).
(2)連接PC,若四邊形CDQP的內(nèi)部(包括邊界和頂點(diǎn))只有4個(gè)橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn),求k的取值范圍.
(3)如圖②,四邊形CDQP為平行四邊形時(shí),
①求k的值;
②E、F為線(xiàn)段DB上的點(diǎn)(含端點(diǎn)),橫坐標(biāo)分別為a,a+n(n為正整數(shù)),EG∥y軸交拋物線(xiàn)于點(diǎn)G.問(wèn)是否存在正整數(shù)n,使?jié)M足tan∠EGF的點(diǎn)E有兩個(gè)?若存在,求出n;若不存在說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機(jī)做出“石頭”、“剪刀”、“布”三種手勢(shì)的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢(shì)是和局.
(1)用樹(shù)形圖或列表法計(jì)算在一局游戲中兩人獲勝的概率各是多少?
(2)如果兩人約定:只要誰(shuí)率先勝兩局,就成了游戲的贏家.用樹(shù)形圖或列表法求只進(jìn)行兩局游戲便能確定贏家的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com