【題目】如圖①拋物線y=﹣x2+m1x+m與直線ykx+k交于點(diǎn)AB,其中A點(diǎn)在x軸上,它們與y軸交點(diǎn)分別為CDP為拋物線的頂點(diǎn),且點(diǎn)P縱坐標(biāo)為4,拋物線的對(duì)稱軸交直線于點(diǎn)Q

1)試用含k的代數(shù)式表示點(diǎn)Q、點(diǎn)B的坐標(biāo).

2)連接PC,若四邊形CDQP的內(nèi)部(包括邊界和頂點(diǎn))只有4個(gè)橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn),求k的取值范圍.

3)如圖②,四邊形CDQP為平行四邊形時(shí),

①求k的值;

EF為線段DB上的點(diǎn)(含端點(diǎn)),橫坐標(biāo)分別為aa+nn為正整數(shù)),EGy軸交拋物線于點(diǎn)G.問是否存在正整數(shù)n,使?jié)M足tanEGF的點(diǎn)E有兩個(gè)?若存在,求出n;若不存在說明理由.

【答案】1Q1,2k),B(﹣k+3,﹣k2+4k);(21k;(3)①k1;②不存在,理由見解析.

【解析】

1)由圖可知,拋物線對(duì)稱軸在y軸右側(cè),頂點(diǎn)P縱坐標(biāo)為4,用頂點(diǎn)坐標(biāo)公式即列得關(guān)于m的不等式和方程,求解即得到m的值,進(jìn)而得到拋物線解析式.把頂點(diǎn)P的橫坐標(biāo)代入直線ykx+k即得到用k表示點(diǎn)Q的坐標(biāo).令拋物線解析式為0,解方程求得點(diǎn)A坐標(biāo).把直線與拋物線解析式聯(lián)立方程組并整理得關(guān)于x的一元二次方程,利用韋達(dá)定理得xA+xB的值,把xA代入即求得點(diǎn)B橫坐標(biāo)進(jìn)而求得B的縱坐標(biāo).

2)由(1)得C0,3),P1,4),即四邊形CDQP的內(nèi)部(包括邊界和頂點(diǎn))有2個(gè)滿足橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)P、C,另外兩個(gè)滿足的點(diǎn)應(yīng)該是M0,2)、N1,3),由圖象可知此時(shí)點(diǎn)D在線段MS上(不與S0,1)重合),點(diǎn)Q在線段NR上(不與點(diǎn)R1,2)重合).因?yàn)?/span>D0k),Q12k),即列得關(guān)于k的不等式組,求解即得到k的取值范圍.

3)①求直線CP解析式,由四邊形CDQP為平行四邊形可得DQCP,即直線ykx+kk與直線CP解析式的一次項(xiàng)系數(shù)相等,求得k1

②過點(diǎn)FFH⊥⊥EG于點(diǎn)H,則RtFGH中,tanEGF,即GH2FH.由點(diǎn)E、F橫坐標(biāo)分別為aa+n,可用含an的式子表示FH、GH的長,代入GH2FH,得到關(guān)于a的一元二次方程(n為常數(shù)).因?yàn)闈M足tanEGF的點(diǎn)E有兩個(gè),即關(guān)于a的方程有兩個(gè)不相等的實(shí)數(shù)根,由△>0求得n的取值范圍小于0,故不存在滿足條件的正整數(shù)n

解:(1)∵拋物線y=﹣x2+m1x+m的頂點(diǎn)P縱坐標(biāo)為4,

4

解得:m13,m2=﹣5

∵拋物線對(duì)稱軸在y軸右側(cè)

0

解得:m1

m3

∴拋物線為y=﹣x2+2x+3,頂點(diǎn)P14

∵直線ykx+k與對(duì)稱軸交于點(diǎn)Q

Q1,2k

y=﹣x2+2x+30時(shí),解得:x1=﹣1,x23

A(﹣1,0

整理得:x2+k2x+k30

xA+xB=﹣(k2

xB=﹣(k2)﹣xA=﹣(k2)﹣(﹣1)=﹣k+3

yBkxB+k=﹣k2+4k

B(﹣k+3,﹣k2+4k

2)∵C0,3),P1,4),D0,k),Q/span>1,2k

∴當(dāng)四邊形CDQP的內(nèi)部(包括邊界和頂點(diǎn))只有4個(gè)橫坐標(biāo)、縱坐標(biāo)均為整數(shù)的點(diǎn)時(shí),

4個(gè)點(diǎn)是C、PM0,2)、N1,3)(如圖1

∴點(diǎn)D在線段MS上(不與S0,1)重合),點(diǎn)Q在線段NR上(不與點(diǎn)R1,2)重合)

,解得:1k

3)①∵C0,3),P1,4

∴直線CP解析式為yx+3

∵四邊形CDQP為平行四邊形

DQCP,即直線ykx+k平行直線CP

k1

②不存在滿足條件的正整數(shù)n

如圖2,過點(diǎn)FFHEG于點(diǎn)H

∴∠FHE=∠FHG90°

k1

∴直線AByx+1

∵點(diǎn)E在線段DB上橫坐標(biāo)為a,EGy軸交拋物線于點(diǎn)G

Ea,a+1),Ga,﹣a2+2a+3

∵點(diǎn)F在線段DB上橫坐標(biāo)為a+n

FHxFxEn,Fa+n,a+n+1

GHyGyF=﹣a2+2a+3﹣(a+n+1)=﹣a2+a+2n

RtFGH中,tanEGF

GH2FH

∴﹣a2+a+2n2n,整理得:a2a+3n20

∵滿足tanEGF的點(diǎn)E有兩個(gè),

∴關(guān)于a的方程a2a+3n20有兩個(gè)不相等的實(shí)數(shù)根

∴△=143n2)>0

解得:0n

∴不存在正整數(shù)n,使?jié)M足tanEGF的點(diǎn)E有兩個(gè).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2bxc圖象的一部分,圖象過點(diǎn)A(3,0),對(duì)稱軸為直線x=-1,給出四個(gè)結(jié)論:①c0;② 2ab0;③0;④若點(diǎn)為函數(shù)圖象上的兩點(diǎn),則y1y2,其中,正確結(jié)論的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富同學(xué)們的知識(shí),拓展閱讀視野,學(xué)習(xí)圖書館購買了一些科技、文學(xué)、歷史等書籍,進(jìn)行組合搭配成、三種套型書籍,發(fā)放給各班級(jí)的圖書角供同學(xué)們閱讀,已知各套型的規(guī)格與價(jià)格如下表:

套型

套型

套型

規(guī)格(本/套)

12

9

7

價(jià)格(元/套)

200

150

120

1)已知搭配兩種套型書籍共15套,需購買書籍的花費(fèi)是2120元,問兩種套型各多少套?

2)若圖書館用來搭配的書籍共有2100本,現(xiàn)將其搭配成、兩種套型書籍,這兩種套型的總價(jià)為30750元,求搭配后剩余多少本書?

3)若圖書館用來搭配的書籍共有122本,現(xiàn)將其搭配成、、三種套型書籍共13套,且沒有剩余,請(qǐng)求出所有搭配的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,ABBC,點(diǎn)DAC上,將△ABD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△CBE

1)求∠DCE的度數(shù);

2)當(dāng)AC4,ADDC13時(shí),求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】社會(huì)主義核心價(jià)值觀是社會(huì)主義核心價(jià)值體系最核心的體現(xiàn),踐行社會(huì)主義和興價(jià)值觀也是每一名中學(xué)生的責(zé)任.某校開展了社會(huì)主義核心價(jià)值觀演講比賽,學(xué)習(xí)在演講比賽活動(dòng)中,對(duì)全校學(xué)生用AB、CD四個(gè)等級(jí)進(jìn)行評(píng)分,現(xiàn)從中隨機(jī)抽取若干名學(xué)生進(jìn)行調(diào)查,繪制出了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中的信息回答下列問題:

1)共抽取了多少名學(xué)生進(jìn)行調(diào)查?

2)將圖甲中的條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)求出圖乙中B等級(jí)所占圓心角的度數(shù);

4)某班有男、女各2名學(xué)生報(bào)名參加演講比賽,若該班班主任從中選2名學(xué)生最終參加校級(jí)比賽,試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊ABC中, .動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度向終點(diǎn)C運(yùn)動(dòng).作PMBC于點(diǎn)M,連結(jié)PQ.以PM、PQ為鄰邊作□PMNQ,設(shè)□PMNQABC重疊部分圖形的面積為S,點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒.

1_____________(用含t的代數(shù)式表示).

2)當(dāng)四邊形PMNQ是菱形時(shí),求t的值.

3)求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)ECF⊥AF,且CF=CE

1)求證:CF⊙O的切線;

2)若sin∠BAC=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)EF分別在線段BC、DC上,線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與線段AF重合.若,則旋轉(zhuǎn)的角度是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過A作直線ACPC交⊙O于另一點(diǎn)D,連接PAPB

(1)求證:AP平分∠CAB

(2)P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則

①當(dāng)弦AP的長是_____時(shí),以A,OP,C為頂點(diǎn)的四邊形是正方形;

②當(dāng)的長度是______時(shí),以A,D,O,P為頂點(diǎn)的四邊形是菱形.

查看答案和解析>>

同步練習(xí)冊答案