【題目】如圖,在平面直角坐標系中,頂點為的拋物線軸的另一個交點為,連接

1)求拋物線的函數(shù)表達式;

2)已知點的坐標為,將拋物線向上平移得到拋物線,拋物線軸分別交于點(在點的左側(cè)),如果相似,求所有符合條件的拋物線的函數(shù)表達式.

【答案】1;(2的函數(shù)表達式為

【解析】

1)根據(jù)和拋物線的對稱性可得是等腰直角三角形,過,利用等腰直角三角形的性質(zhì)可求出點M的坐標,再將點A和點M的坐標代入求解即可;

2)利用等腰直角三角形的性質(zhì)和角的計算可得,分兩種情況:,分別求得點F的坐標,由題意可設的函數(shù)表達式為,將點F的坐標代入即可求得結(jié)果.

解:(1)∵拋物線的頂點為,

由拋物線的對稱性可得:,

,

是等腰直角三角形,

如圖,過軸于,則OA的中點,

可得:,

∴點的坐標為

把點代入,可得

,解得,

拋物線的函數(shù)表達式為

2是等腰直角三角形,,

,

由題意可知:點F在點A的右側(cè),,

,

∵點的坐標為,

①當時,

,解得,

∴點的坐標為,

②當時,,

,解得,

∴點的坐標為

拋物線向上平移得到拋物線,拋物線化為頂點式得

設拋物線的函數(shù)表達式為,

把點代入得:

,解得:,

此時拋物線的函數(shù)表達式為

把點代入得:

,解得:

此時拋物線的函數(shù)表達式為;

綜上所述,所有符合條件的拋物線的函數(shù)表達式為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸相交于點,與軸相交于兩點,點是線段上的一個動點,過軸交于點,交拋物線于點(點在點的左側(cè)).

(1)求拋物線的解析式.

(2)當四邊形是平行四邊形時,求點的坐標.

(3)設的面積為,的面積為,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,在平面直角坐標系中,拋物線軸交于點、右),與軸交于點,且

1)求拋物線的解析式;

2)如圖2,點在第一象限拋物線上,連接,若,求點的坐標;

3)在(2)的條件下,如圖3,過點軸,線段經(jīng)過點,與拋物線交于點,連接、,,點在線段上,連接,交于點,點上,連接,交于點,若,,,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E AB 上的一點,連接DE,過點AAFDE,垂直為F.圓O經(jīng)過點C D ,F,且與AD相交于點G

(1)求證,△AFG∽△DFC;

(2)AB=3,BC=5,AE=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果一個三角形一條邊上的高與這條邊的比值是35,那么稱這個三角形為“準黃金”三角形,這條邊就叫做這個三角形的“金底”.

(概念感知)

1)如圖1,在中,,,試判斷是否是“準黃金”三角形,請說明理由.

(問題探究)

2)如圖2,是“準黃金”三角形,BC是“金底”,把沿BC翻折得到,連ABADBC的延長線于點E,若點C恰好是的重心,求的值.

(拓展提升)

3)如圖3,,且直線之間的距離為3,“準黃金”的“金底”BC在直線上,點A在直線上.,若是鈍角,將繞點按順時針方向旋轉(zhuǎn)得到,線段于點D

①當時,則_________

②如圖4,當點B落在直線上時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙OAB=AC,延長BC至點D,使CD=CA,連接AD⊙O于點E,連接BE、CE.

(1)求證:△ABE≌△CDE;

(2)填空:

∠ABC的度數(shù)為   時,四邊形AOCE是菱形;

AE=6,EF=4,DE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校教務處為了解九年級學生“居家學習”的學習能力,隨機抽取該年級部分學生,對他們的學習能力進行了統(tǒng)計,其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖(其中學習能力指數(shù)級別“1”級,代表學習能力很強;“2”級,代表學習能力較強;“3”級,代表學習能力一般;“4“級,代表學習能力較弱)請結(jié)合圖中相關(guān)數(shù)據(jù)回答問題.

1)本次抽查的學生人數(shù)   人,并將條形統(tǒng)計圖補充完整;

2)本次抽查學生“居家學習”能力指數(shù)級別的眾數(shù)為   級,中位數(shù)為   級.

3)已知學習能力很強的學生中只有1名女生,現(xiàn)從中隨機抽取兩人寫有關(guān)“居家學習”的報告,請用列表或畫樹狀圖的方法求所抽查的兩位學生中恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點A、Dx軸的負半軸上,點Cy軸的正半軸上,點FAB上,點B、E在反比例函數(shù)yk為常數(shù),k0)的圖象上,正方形ADEF的面積為4,且BF2AF,則k值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形的三個頂點分別落在反比例函數(shù)的圖象上,并且底邊經(jīng)過原點,__________

查看答案和解析>>

同步練習冊答案