【題目】如圖,已知菱形ABCD的邊長(zhǎng)為2cmA=60°,點(diǎn)M從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)A同時(shí)出發(fā),以2cm/s的速度經(jīng)過(guò)點(diǎn)D向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).則AMN的面積ycm2)與點(diǎn)M運(yùn)動(dòng)的時(shí)間ts)的函數(shù)的圖象大致是( 。

A. B.

C. D.

【答案】A

【解析】

試題已知點(diǎn)M從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)N從點(diǎn)A同時(shí)出發(fā),以2cm/s的速度經(jīng)過(guò)點(diǎn)D向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).因而點(diǎn)M,N應(yīng)同時(shí)到達(dá)端點(diǎn),當(dāng)點(diǎn)N到達(dá)點(diǎn)D時(shí),點(diǎn)M正好到達(dá)AB的中點(diǎn),則當(dāng)t≤1秒時(shí),△AMN的面積ycm2)與點(diǎn)M運(yùn)動(dòng)的時(shí)間ts)的函數(shù)關(guān)系式是:y=;當(dāng)t1時(shí):函數(shù)關(guān)系式是:y=.故答案選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到,當(dāng)點(diǎn)在線(xiàn)段CA延長(zhǎng)線(xiàn)上時(shí)的面積為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(教材呈現(xiàn))下圖是華師版九年級(jí)上冊(cè)數(shù)學(xué)教材第103104頁(yè)的部分內(nèi)容.

定理證明:請(qǐng)根據(jù)教材圖24.2.2的提示,結(jié)合圖①完成直角三角形的性質(zhì):“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”的證明.

定理應(yīng)用:如圖②,在中,,垂足為點(diǎn)(點(diǎn)上),邊上的中線(xiàn),垂直平分.求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)春市對(duì)全市各類(lèi)(A型、B型、C型.其它型)校車(chē)共848輛進(jìn)行環(huán)保達(dá)標(biāo)普查,普查結(jié)果繪制成如下條形統(tǒng)計(jì)圖:

(1)求全市各類(lèi)環(huán)保不達(dá)標(biāo)校車(chē)的總數(shù);

(2)求全市848輛校車(chē)中環(huán)保不達(dá)標(biāo)校車(chē)的百分比;

(3)規(guī)定環(huán)保不達(dá)標(biāo)校車(chē)必須進(jìn)行維修,費(fèi)用為:A500/輛,B1000/輛,C600/輛,其它型300/輛,求全市需要進(jìn)行維修的環(huán)保不達(dá)標(biāo)校車(chē)維修費(fèi)的總和;

(4)若每輛校車(chē)乘坐40名學(xué)生,那么一次性維修全部不達(dá)標(biāo)校車(chē)將會(huì)影響全市80000名學(xué)生乘校車(chē)上學(xué)的百分比是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)化肥的總?cè)蝿?wù)一定,平均每天化肥產(chǎn)量y(噸)與完成生產(chǎn)任務(wù)所需要的時(shí)間x(天)之間成反比例關(guān)系,如果每天生產(chǎn)化肥125噸,那么完成總?cè)蝿?wù)需要7天.

1)求y關(guān)于x的函數(shù)表達(dá)式,并指出比例系數(shù);

2)若要5天完成總?cè)蝿?wù),則每天產(chǎn)量應(yīng)達(dá)到多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有實(shí)數(shù)根.

(1)求k的取值范圍;

(2)若此方程的兩實(shí)數(shù)根x1,x2滿(mǎn)足x12+x22=11,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在反比例函數(shù)y= 的圖象上有一動(dòng)點(diǎn)A,連接AO并延長(zhǎng)交圖象的另一支于點(diǎn)B,在第二象限內(nèi)有一點(diǎn)C,滿(mǎn)足AC=BC,當(dāng)點(diǎn)A運(yùn)動(dòng)時(shí),點(diǎn)C始終在函數(shù)y= 的圖象上運(yùn)動(dòng),若tanCAB=2,則k的值為(

A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)軸交于點(diǎn)A2,0),交軸于點(diǎn)B0,),直線(xiàn)過(guò)點(diǎn)Ay軸交于點(diǎn)C,與拋物線(xiàn)的另一個(gè)交點(diǎn)為D,作DEy軸于點(diǎn)E.設(shè)點(diǎn)P是直線(xiàn)AD上方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)Py軸的平行線(xiàn),交直線(xiàn)AD于點(diǎn)M,作PNAD于點(diǎn)N

⑴填空:= ,= = ;

⑵探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

⑶設(shè)PMN的周長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為x,求x的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)Bx軸的正半軸上,OA邊在直線(xiàn)y=x上,AB邊在直線(xiàn)y=-x+2上.

1)直接寫(xiě)出:線(xiàn)段OA等于多少,∠AOC等于多少度;

2)在對(duì)角線(xiàn)OB上有一動(dòng)點(diǎn)P,以O為圓心,OP為半徑畫(huà)弧MN,分別交菱形的邊OAOC于點(diǎn)M、N,作⊙Q與邊AB、BC、弧MN都相切,⊙Q分別與邊ABBC相切于點(diǎn)D、E,設(shè)⊙Q的半徑為r,OP的長(zhǎng)為y,求yr之間的函數(shù)關(guān)系式,并寫(xiě)出自變量r的取值范圍;

3)若以O為圓心、OA長(zhǎng)為半徑作扇形OAC,請(qǐng)問(wèn)在菱形OABC中,在除去扇形OAC后的剩余部分內(nèi),是否可以截下一個(gè)圓,使得它與扇形OAC剛好圍成一個(gè)圓錐,若可以,求出這個(gè)圓的半徑,若不可以,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案