【題目】如圖,C為線段AD上一點,BCD的中點,AD=8 cm,BD=2 cm.

(1)圖中共有多少條線段?

(2)AC的長.

(3)若點E在直線AD,EA=3 cm,BE的長.

【答案】16;(24cm;(39cm3cm.

【解析】試題分析:(1)根據(jù)線段的定義找出圖中所有線段,圖中線段有:AC,AB,AD,CB,CD,BD6,

(2)根據(jù)線段的和差關系和線段中點性質(zhì)進行計算可得: AC= AD-CD= AD-2BD=8-4=4,

(3)因為點E在直線AD,EA=3cm,題目中沒有明確點E 的具體位置,所以要分兩種情況討論, ①EA點的左側時, ②EA點的右側時,利用線段和差關系分別進行計算.

試題解析:(1)圖中共有6條線段,

(2)∵點BCD的中點,

CD=2BD,

BD=2 cm,

CD=4 cm,

AC=AD-CDAD=8 cm,CD=4 cm,

AC=4 cm,

(3)E在點A的左邊時,BE=BA+EABA=6 cm,EA=3 cm,

BE=9 cm.

E在點A的右邊時,BE=AB-EAAB=6 cm,EA=3 cm,

BE=3 cm.

BE=9 cmBE=3 cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,P是第一象限角平分線上的一點,且P點的橫坐標為3.把一塊三角板的直角頂點固定在點P處,將此三角板繞點P旋轉(zhuǎn),在旋轉(zhuǎn)的過程中設一直角邊與x軸交于點E,另一直角邊與y軸交于點F,若POE為等腰三角形,則點F的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校八年級舉行英語演講比賽,購買A,B兩種筆記本作為獎品,這兩種筆記本的單價分別是12元和8元.根據(jù)比賽設獎情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設買A筆記本n本,買兩種筆記本的總費為w元.

(1)寫出w(元)關于n(本)的函數(shù)關系式,并求出自變量n的取值范圍;

(2)購買這兩種筆記本各多少時,費用最少?最少的費用是多少元?

(3)商店為了促銷,決定僅對A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價不變.問購買這兩種筆記本各多少本時花費最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請從下列、兩題中任選一題作答,我選擇: .

:如圖,已知,射線外部,且.若射線平分.的度數(shù).

:如圖,已知,射線的內(nèi)部,射線的內(nèi)部,且,若射線平分,射線平分.的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線 與x軸交于點A(-2,0)、B(4,0)兩點,與y軸交于點C.

(1)求拋物線的表達式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度向C點運動.其中一個點到達終點時,另一個點也停止運動.當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?
(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點K,使 ,求K點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:
在數(shù)學課上,老師請同學思考如下問題:
請利用直尺和圓規(guī)確定圓中弧AB所在圓的圓心

小亮的作法如下:
如圖:
① 在弧AB上任意取一點C,分別連接AC,BC
②分別作AC,BC的垂直平分線,兩條垂線平分線交于O點,所以點O就是所求弧AB的圓心

老師說:“小亮的作法正確.”
請你回答:小亮的作圖依據(jù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是AB上一點,連接CD,且∠ACD=∠ABC.

(1)求證:△ACD∽△ABC;
(2)若AD=6,AB=10,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,旱災無情人有情.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;

3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角ABC的斜邊上取異于B,C的兩點E,F,使∠EAF=45°,求證:以EF,BE,CF為邊的三角形是直角三角形.

查看答案和解析>>

同步練習冊答案