分析 (1)當(dāng)S=△OMN面積的一半時(shí),分兩種情況進(jìn)行討論:①點(diǎn)P在ON上;點(diǎn)P在MN上,分別求得點(diǎn)P的坐標(biāo);
(2)先根據(jù)當(dāng)t=6+5$\sqrt{2}$時(shí),ON+NP=6+5$\sqrt{2}$,NP=5$\sqrt{2}$,PM=$\sqrt{2}$,求得點(diǎn)P的坐標(biāo)為(5,1),再作點(diǎn)P關(guān)于y軸對(duì)稱的點(diǎn)P',作點(diǎn)O關(guān)于直線x=$\frac{3}{4}$的對(duì)稱點(diǎn)O',則P'(-5,1),O'($\frac{3}{2}$,0),連接O'P',交y軸于點(diǎn)D,交直線x=$\frac{3}{4}$于點(diǎn)C,則此時(shí)PD+DC+OC值最小,等于線段O'P'的長,運(yùn)用待定系數(shù)法求得直線O'P'的解析式為y=-$\frac{2}{13}$x+$\frac{3}{13}$,進(jìn)而得到C、D兩點(diǎn)的坐標(biāo)及此時(shí)PD+DC+OC最小值;
(3)根據(jù)旋轉(zhuǎn)過程中△EFB′為等腰三角形,需要分三種情況討論:當(dāng)EB'=EF時(shí),當(dāng)B'E=B'F時(shí),當(dāng)FE=FB'時(shí),分別求得a的度數(shù)與B′點(diǎn)的橫坐標(biāo)的平方.
解答 解:(1)分兩種情況討論:
①如圖1,當(dāng)點(diǎn)P在ON上時(shí),根據(jù)S=△OMN面積的一半,可得點(diǎn)P為NO的中點(diǎn),
∵OM=6,∠OMN=45°,
∴△MON是等腰直角三角形,
∴ON=6,
∴OP=3,
∴P(0,3);
②如圖1,當(dāng)點(diǎn)P在MN上時(shí),根據(jù)S=△OMN面積的一半,可得點(diǎn)P為NM的中點(diǎn),
∵△MON是等腰直角三角形,OM=ON=6,
∴P(3,3);
綜上所述,點(diǎn)P的坐標(biāo)為(0,3)或(3,3);
(2)∵ON=6,
∴當(dāng)t=6+5$\sqrt{2}$時(shí),ON+NP=6+5$\sqrt{2}$,NP=5$\sqrt{2}$,PM=$\sqrt{2}$,
∴點(diǎn)P的坐標(biāo)為(5,1),
如下圖,作點(diǎn)P關(guān)于y軸對(duì)稱的點(diǎn)P',作點(diǎn)O關(guān)于直線x=$\frac{3}{4}$的對(duì)稱點(diǎn)O',則P'(-5,1),O'($\frac{3}{2}$,0),
連接O'P',交y軸于點(diǎn)D,交直線x=$\frac{3}{4}$于點(diǎn)C,則此時(shí)PD+DC+OC值最小,等于線段O'P'的長,
設(shè)直線O'P'的解析式為y=kx+b,則
$\left\{\begin{array}{l}{1=-5k+b}\\{0=\frac{3}{2}k+b}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=-\frac{2}{13}}\\{b=\frac{3}{13}}\end{array}\right.$,
∴直線O'P'的解析式為y=-$\frac{2}{13}$x+$\frac{3}{13}$,
∴當(dāng)x=$\frac{3}{4}$時(shí),y=$\frac{3}{26}$,即C($\frac{3}{4}$,$\frac{3}{26}$);
當(dāng)x=0時(shí),y=$\frac{3}{13}$,即D(0,$\frac{3}{13}$);
此時(shí)PD+DC+OC=O'P'=$\sqrt{(\frac{3}{2}+5)^{2}+{1}^{2}}$=$\frac{\sqrt{173}}{2}$,
∴PD+DC+OC最小值為$\frac{\sqrt{173}}{2}$;
(3)①當(dāng)EB'=EF時(shí),∠B'=∠B'FE=∠MFO=45°,
∵∠FMO=45°,
∴此時(shí)∠MOF=90°,即點(diǎn)F與點(diǎn)N重合,即OF=ON,
故△EFB′不存在,不合題意;
②當(dāng)B'E=B'F時(shí),如圖,過點(diǎn)B'作B'H⊥OM于H,過點(diǎn)F作FG⊥OM于G,則FG∥B'H,
∵∠EB'F=45°,
∴∠B'FE=∠MFO=67.5°=∠MFO,
又∵∠OMF=45°,
∴∠MOF=67.5°,
∴a的度數(shù)=∠BOB'=112.5°,
此時(shí)MF=MO=6,
∴Rt△MFG中,F(xiàn)G=MG=3$\sqrt{2}$,
∴OG=6-3$\sqrt{2}$,
由FG∥B'H,可得$\frac{OG}{OM}$=$\frac{FG}{B'H}$,即$\frac{6-3\sqrt{2}}{OH}$=$\frac{3\sqrt{2}}{B'H}$,
∴B'H=$\frac{3\sqrt{2}}{6-3\sqrt{2}}$OH=($\sqrt{2}$+1)OH,
∵Rt△OHB'中,OH2+B'H2=B'O2,
∴OH2+($\sqrt{2}$+1)2OH2=62,
解得OH2=18-9$\sqrt{2}$,即B′點(diǎn)的橫坐標(biāo)的平方為18-9$\sqrt{2}$;
③當(dāng)FE=FB'時(shí),如圖,過點(diǎn)B'作B'H⊥OM于H,
∵∠EB'F=∠FEB'=45°,
∴∠EFB'=90°=∠MFO,
又∵∠OMF=45°,
∴∠MOF=45°,
∴a的度數(shù)=∠BOB'=135°,
此時(shí),Rt△OHB'中,OH2=$\frac{1}{2}$B'O2=$\frac{1}{2}$×36=18,即B′點(diǎn)的橫坐標(biāo)的平方為18.
點(diǎn)評(píng) 本題屬于幾何變換綜合題,主要考查了等腰直角三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),平行線分線段成比例定理,待定系數(shù)法求函數(shù)解析式,等腰三角形的性質(zhì)以及勾股定理的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形和平行線,運(yùn)用分類討論思想進(jìn)行求解.解題時(shí)注意:等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì),還具備等腰三角形和直角三角形的所有性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{4}$ | B. | 3π | C. | $\frac{22}{7}$ | D. | $\root{3}{8}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -0.5 | B. | 1 | C. | 2 | D. | 0.5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | ±1 | C. | 0和1 | D. | 0 或±1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.2米 | B. | 15米 | C. | 2米 | D. | 1米 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com