【題目】如圖,每個小正方形的邊長都是1.均在網(wǎng)格的格點上.
(1)直接寫出四邊形的面積與、的長度;
(2)是直角嗎?請說出你的判斷理由.
(3)找到一個格點,并畫出四邊形,使得其面積與四邊形的面積相等.
解:(1)___________;___________;___________.
(2)判斷___________(填“是”或“否”)
理由_________________________________________________;
(3)在圖中畫出一個滿足條件的四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊上一點,為邊的中點,過點作,交的延長線于點,連結(jié).
(1)求證:四邊形是平行四邊形;
(2)若點為邊的中點,當(dāng)線段BC與線段AC滿足什么數(shù)量關(guān)系時,四邊形為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的圖象刻畫了“龜兔再次賽跑”的故事(表示烏龜從起點出發(fā)所行的時間,表示烏龜所行的路程,表示兔子所行的路程).
①“龜兔再次賽跑”的路程為______米;
②兔子比烏龜晚出發(fā)______分鐘;
③烏龜在途中休息了______分鐘;
④烏龜?shù)乃俣仁?/span>______米/分;
⑤兔子的速度是______米/分;
⑥兔子在距起點______米處追上烏龜.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海市水務(wù)局對某小區(qū)居民生活用水情況進(jìn)行了調(diào)査.隨機(jī)抽取部分家庭進(jìn)行統(tǒng)計,繪制成如下尚未完成的頻數(shù)分布表和頻率分布直方圖.請根據(jù)圖表,解答下列問題:
月均用水量(單位:噸 | 頻數(shù) | 頻率 |
2≤x<3 | 4 | 0.08 |
3≤x<4 | a | b |
4≤x<5 | 14 | 0.28 |
5≤x<6 | 9 | c |
6≤x<7 | 6 | 0.12 |
7≤x<8 | 5 | 0.1 |
合計 | d | 1.00 |
(1)b= ,c= ,并補(bǔ)全頻數(shù)分布直方圖;
(2)為鼓勵節(jié)約用水用水,現(xiàn)要確定一個用水量標(biāo)準(zhǔn)P(單位:噸),超過這個標(biāo)準(zhǔn)的部分按1.5倍的價格收費,若要使60%的家庭水費支出不受影響,則這個用水量標(biāo)準(zhǔn)P= 噸;
(3)根據(jù)該樣本,請估計該小區(qū)400戶家庭中月均用水量不少于5噸的家庭約有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)完二次根式一章后,小易同學(xué)看到這樣一題:“函數(shù)中,自變量的取值范圍是什么?”這個問題很簡單,根據(jù)二次根式的性質(zhì)很容易得到自變量的取值范圍.聯(lián)想到一次函數(shù),小易想進(jìn)一步研究這個函數(shù)的圖象和性質(zhì).以下是他的研究步驟:
第一步:函數(shù)中,自變量的取值范圍是_____________.
第二步:根據(jù)自變量取值范圍列表:
-1 | 0 | 1 | 2 | 3 | 4 | ||
0 | 1 | 2 |
__________.
第三步:描點畫出函數(shù)圖象.
在描點的時候,遇到了,這樣的點,小易同學(xué)用所學(xué)勾股定理的知識,找到了畫圖方法,如圖所示:
你能否從中得到啟發(fā),在下面的軸上標(biāo)出表示 、、的點,并畫出的函數(shù)圖象.
第四步:分析函數(shù)的性質(zhì).
請寫出你發(fā)現(xiàn)的函數(shù)的性質(zhì)(至少寫兩條):
____________________________________________________________________________________________
____________________________________________________________________________________________
第五步:利用函數(shù)圖象解含二次根式的方程和不等式.
(1)請在上面坐標(biāo)系中畫出的圖象,并估算方程的解.
(2)不等式的解是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點在邊上(點與點、不重合),過點作,與邊相交于點,與邊的延長線相交于點.
(1)與有什么樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論:____________________
(2)、、的數(shù)量之間具有怎樣的關(guān)系?并證明你所得到的結(jié)論.
(3)如果正方形的邊長是1,,直接寫出點到直線的距離.
解:(1)與的數(shù)量關(guān)系:____________________
(2)、、的數(shù)量之間的關(guān)系是 .
證明:
(3)點到直線的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,按以下步驟作圖:①以點A為圓心,AB的長為半徑作弧,交AD于點F;②分別以點F,B為圓心大于FB的長為半徑作弧,兩弧在∠DAB內(nèi)交于點G;③作射線AG,交邊BC于點E,連接EF.若AB=5,BF=8,則四邊形ABEF的面積為( )
A.12B.20C.24D.48
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點C的對應(yīng)點C′.(利用網(wǎng)格點和三角板畫圖)
(1)畫出平移后的△A′B′C′.
(2)畫出AB邊上的中線線CD;
(3)在整個平移過程中,線段BC掃過的面積是___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com