【題目】如圖,的直徑,和過(guò)點(diǎn)的切線互相垂直,垂足為,直線、交于點(diǎn)于點(diǎn)

1)求證:平分

2)若,,求的長(zhǎng).

【答案】1)見(jiàn)解析 (2

【解析】

1)先通過(guò)切線的性質(zhì)和垂直得出,然后有,再根據(jù)等腰三角形的性質(zhì)有,通過(guò)等量代換即可得出,則結(jié)論可證;

2)方法一:先利用圓周角定理和圓內(nèi)接四邊形的性質(zhì)得出,然后利用得出,則DF可求,進(jìn)而AD可求,利用勾股定理可求出AC的長(zhǎng)度,然后利用得出,進(jìn)而求出AB的長(zhǎng)度,最后利用平行線分線段成比例求解即可;

方法二:先利用圓周角定理和圓內(nèi)接四邊形的性質(zhì)得出,然后利用得出,則DF可求,進(jìn)而AD可求,利用勾股定理可求出AC的長(zhǎng)度,然后利用得出,進(jìn)而求出AB的長(zhǎng)度以及然后利用,最后利用求解即可.

1)證明:如圖,連接,

和過(guò)點(diǎn)的切線互相垂直,垂足為,

,

是過(guò)點(diǎn)的切線,

平分

2)方法一:

如圖,連接,,

的直徑,

,

,

由(1)知

四邊形是圓內(nèi)接四邊形,

,

,

由(1)知,

.即

解得(舍).

中,

中,,,

,即

,,

,

,即

方法二:如圖,連接,

的直徑,

由(1)知

四邊形是圓內(nèi)接四邊形,

,

由(1)知,

.即

解得(舍).

中,

中,,

,

,

,

,

,

,

,即

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢“新冠肺炎”發(fā)生以來(lái),某醫(yī)療公司積極復(fù)工,加班加點(diǎn)生產(chǎn)醫(yī)用防護(hù)服,為防控一線助力.以下是該公司以往的市場(chǎng)調(diào)查,發(fā)現(xiàn)該公司防護(hù)服的日銷售量y(套)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,如下圖所示,關(guān)于日銷售利潤(rùn)w(元)和銷售單價(jià)x(元)的幾組對(duì)應(yīng)值如下表:

銷售單價(jià)x(元)

85

95

105

日銷售利潤(rùn)w(元)

875

1875

1875

(注:日銷售利潤(rùn)=日銷售量×(銷售單價(jià)一成本單價(jià)))

1)求y關(guān)于x的函數(shù)解析式(不要求寫出x的取值范圍);

2)根據(jù)函數(shù)圖象和表格所提供的信息,填空:

該公司生產(chǎn)的防護(hù)服的成本單價(jià)是   元,當(dāng)銷售單價(jià)x   元時(shí),日銷售利潤(rùn)w最大,最大值是   元;

3)該公司復(fù)工以后,在政府部門的幫助下,原材料采購(gòu)成本比以往有了下降,平均起來(lái),每生產(chǎn)一套防護(hù)服,成本比以前下降5元.該公司計(jì)劃開(kāi)展科技創(chuàng)新,以降低該產(chǎn)品的成本,如果在今后的銷售中,日銷售量與銷售單價(jià)仍存在(1)中的關(guān)系.若想實(shí)現(xiàn)銷售單價(jià)為90元時(shí),日銷售利潤(rùn)不低于3750元的銷售目標(biāo),該產(chǎn)品的成本單價(jià)應(yīng)不超過(guò)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸于AB兩點(diǎn),交y軸于點(diǎn)C.直線經(jīng)過(guò)點(diǎn)A,C

1)求拋物線的解析式;

2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線,交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為m

①當(dāng)是直角三角形時(shí),求點(diǎn)P的坐標(biāo);

②作點(diǎn)B關(guān)于點(diǎn)C的對(duì)稱點(diǎn),則平面內(nèi)存在直線l,使點(diǎn)M,B,到該直線的距離都相等.當(dāng)點(diǎn)Py軸右側(cè)的拋物線上,且與點(diǎn)B不重合時(shí),請(qǐng)直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DEBC于點(diǎn)F,連接BE,EF.

(1)CDBE相等?若相等,請(qǐng)證明;若不相等,請(qǐng)說(shuō)明理由;

(2)若∠BAC=90°,求證:BF2+CD2=FD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸相交于點(diǎn),與軸相交于、兩點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)軸交于點(diǎn),交拋物線于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).

(1)求拋物線的解析式.

(2)當(dāng)四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo).

(3)設(shè)的面積為的面積為,當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保障師生復(fù)學(xué)復(fù)課安全,某校利用熱成像體溫檢測(cè)系統(tǒng),對(duì)入校師生進(jìn)行體溫檢測(cè).如圖是測(cè)溫通道示意圖,在測(cè)溫通道側(cè)面A點(diǎn)測(cè)得∠DAB49°,∠CAB35°.若AB3m,求顯示牌的高度DC.(sin35°≈0.57tan35°≈0.70,sin49°=0.75tan49°≈1.15,結(jié)果精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+x+cx軸交于點(diǎn)A6,0),C(﹣2,0),與y軸交于點(diǎn)B,拋物線的頂點(diǎn)為D,對(duì)稱軸交AB于點(diǎn)E,交x軸于點(diǎn)F

1)求拋物線的解析式;

2P是拋物線上對(duì)稱軸左側(cè)一點(diǎn),連接EP,若tanBEP,求點(diǎn)P的坐標(biāo);

3M是直線CD上一點(diǎn),N是拋物線上一點(diǎn),試判斷是否存在這樣的點(diǎn)N,使得以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)發(fā)現(xiàn)

如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,.

填空:當(dāng)點(diǎn)位于____________時(shí),線段的長(zhǎng)取得最大值,且最大值為_(kāi)________.(用含,的式子表示)

(2)應(yīng)用

點(diǎn)為線段外一動(dòng)點(diǎn),且.如圖所示,分別以,為邊,作等邊三角形和等邊三角形,連接,.

找出圖中與相等的線段,并說(shuō)明理由;

直接寫出線段長(zhǎng)的最大值.

(3)拓展

如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)為線段外一動(dòng)點(diǎn),且,,,求線段長(zhǎng)的最大值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙OAB=AC,延長(zhǎng)BC至點(diǎn)D,使CD=CA,連接AD⊙O于點(diǎn)E,連接BE、CE.

(1)求證:△ABE≌△CDE;

(2)填空:

當(dāng)∠ABC的度數(shù)為   時(shí),四邊形AOCE是菱形;

AE=6,EF=4,DE的長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案