【題目】在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為( 。
A. (,0) B. (2,0) C. (,0) D. (3,0)
【答案】C
【解析】
解:過點(diǎn)B作BD⊥x軸于點(diǎn)D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∵∠OAC=∠BCD,∠AOC=∠BDC,AC=BC,∴△ACO≌△BCD(AAS),∴OC=BD,OA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴設(shè)反比例函數(shù)的解析式為,將B(3,1)代入,∴k=3,∴,∴把y=2代入,∴x=,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí),此時(shí)點(diǎn)A移動(dòng)了個(gè)單位長度,∴C也移動(dòng)了個(gè)單位長度,此時(shí)點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)為(,0).故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E兩點(diǎn)分別在AB,AC上,且DE∥BC,將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn) 當(dāng)a=0°時(shí),線段BD,CE的數(shù)量關(guān)系是______;
(2)拓展探究 當(dāng)0°≤a<360°時(shí),(1)中的結(jié)論有無變化?請僅就圖2的情形給出證明;
(3)問題解決 設(shè)DE=,BC=3,0°≤α<360°,△ADE旋轉(zhuǎn)至A,B,E三點(diǎn)共線時(shí),直接寫出線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形QABC是矩形,ADEF是正方形,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B、E在反比例函數(shù)y=kx的圖象上,OA=1,OC=6,則正方形ADEF的邊長為( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù)與,這兩個(gè)二次函數(shù)的圖象中的一條與軸交于,兩個(gè)不同的點(diǎn).
試判斷哪個(gè)二次函數(shù)的圖象經(jīng)過,兩點(diǎn);
若點(diǎn)坐標(biāo)為,試求點(diǎn)坐標(biāo);
在的條件下,對于經(jīng)過,兩點(diǎn)的二次函數(shù),當(dāng)取何值時(shí),的值隨值的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,則不正確的結(jié)論是( )
A. Rt△ACD和Rt△BCE全等 B. OA=OB
C. E是AC的中點(diǎn) D. AE=BD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以3cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向A點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請求出點(diǎn)E的坐標(biāo);
(3)在(2)的結(jié)論下,過點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,菱形中,,為中點(diǎn),,,,交于點(diǎn),交于點(diǎn).
求證:四邊形是矩形.
求的度數(shù).
求菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A,B分別在射線OA,ON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:△PCE≌△EDQ;
(2)延長PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:△ABR為等邊三角形;
(3)如圖3,若△ARB∽△PEQ,求∠MON大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com