【題目】如圖,已知拋物線y=ax﹣2ax+3(a≠0),與x軸交于A、B兩點,與y軸交于點C,若OB=3OA.

(1)求拋物線的解析式;

(2)連接BC,點P、點Q是第一象限的拋物線上不同的兩點,是否存在這樣的P點,使得恒成立?若存在,請求P點的坐標,若不存在,請說明理由;

(3)如圖2,D為拋物線的對稱軸與x軸的交點,M為線段OC上一點,過點M作直線l交拋物線于E、F兩點,連接AE、OE、BF、DF若△AEO∽△DFB,求M點的坐標.

【答案】(1)y=﹣x+2x+3;(2)P;(3)(0, ).

【解析】試題分析:(1)利用韋達定理求二次函數(shù)解析式.(2)聯(lián)立一次函數(shù)和二次函數(shù)求解.(3)EF(帶k)的函數(shù),與一元二次方程聯(lián)立,韋達定理,設而不求,利用相似求出k的關系,求出k的值,也就是求出EF函數(shù)的表達式,令x=0,求出M坐標.

試題解析:

解:A(x1,0)B(x2,0),

x1、x2是關于x的方程ax2ax3=0的兩根,

x1x2=2,x1·x2=,

OB=3OAx2=﹣3x1,x1=﹣1,x2=3,a=﹣1

拋物線的解析式為y=﹣x2x3

⑵∵恒成立,最大,BC長不變,只需BC邊上的高最大,

P是直線BC平移后與拋物線得到的唯一公共點,

B(3,0)、C(0,3),BC的解析式為y=﹣x3

BC平移后的直線為y=xb,由,

消去y,得到x3xb3=0,∵△=0,x1=x2=,

y=x2x3中,當x=時,y=P

延長FEx軸于N, D(1,0)

∵△AEO∽△DFB,∴∠EAO=∠FDB,EOA=∠FBD

EAFD,EOFB, ,

N(n,0), ,解得:n=3,N(3,0)

,∴……①,

EF的解析式為y=kx3k,由,

消去y整理,得:x(k﹣2)x3k﹣3=0,

……②,……③,

由①②得: ,

代入③,得,∴ (舍),

直線EF

M(0, )

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)條件求二次函數(shù)的解析式:

(1)拋物線的頂點坐標為(﹣1,﹣1),且與y軸交點的縱坐標為﹣3

(2)拋物線在x軸上截得的線段長為4,且頂點坐標是(3,﹣2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,平面直角坐標系中,O為原點,點A坐標為(﹣4,0),ABy軸,點Cy軸上,一次函數(shù)y=x+3的圖象經(jīng)過點BC

1)點C的坐標為_____,點B的坐標為_____;

2)如圖②,直線l經(jīng)過點C,且與直線AB交于點M,O'O關于直線l對稱,連接CO'并延長,交射線AB于點D

①求證:CMD是等腰三角形;

②當CD=5時,求直線l的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD中,E為對角線BD上一點,過E點作EF⊥BDBCF,連接DF,GDF中點,連接EG,CG

1)求證:EG=CG;

2)將圖△BEFB點逆時針旋轉(zhuǎn)45°,如圖所示,取DF中點G,連接EG,CG

問(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;

3)將圖△BEFB點旋轉(zhuǎn)任意角度,如圖所示,再連接相應的線段,問(1)中的結論是否仍然成立?通過觀察你還能得出什么結論(均不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,DCBC,AE 平分∠BAD,DE 平分∠ADC,以下結論:①∠AED90°;②點 E BC 的中點;③DEBE;ADABCD;其中正確的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,EAD的中點,延長CB到點F,使,連接BE、AF.

(1)完成畫圖并證明四邊形AFBE是平行四邊形;

(2)若AB=6,AD=8,∠C=60°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋子中裝有 4 個紅球和 6 個黃球,這些球除顏色外都相同,將袋子中的球充 分搖勻后,隨機摸出一球.

1)分別求摸出紅球和摸出黃球的概率

2)為了使摸出兩種球的概率相同,再放進去 8 個同樣的紅球或黃球,那么這 8 個球中紅球和 黃球的數(shù)量分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是甲、乙兩人從同一地點出發(fā)后,路程隨時間變化的圖象.

(1)此變化過程中,___________ 是自變量,___________ 是因變量.

(2)甲的速度 ___________ 乙的速度.(填“大于”、“等于”、或“小于”

(3)甲與乙 ___________ 時相遇.

(4)甲比乙先走 ___________ 小時.

(5)9時甲在乙的 ___________ (填“前面”、“后面”、“相同位置”).

(6)路程為150km,甲行駛了___________ 小時,乙行駛了___________ 小時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某縣為了落實中央的強基惠民工程,計劃將某村的居民自來水管道進行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15那么余下的工程由甲隊單獨完成還需5

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費用為6500,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?

查看答案和解析>>

同步練習冊答案