【題目】如圖, ,

)把繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),, 于點(diǎn)

旋轉(zhuǎn)角為,的長(zhǎng)

若點(diǎn)經(jīng)過(guò)的路徑與, 所圍圖形的面積與面積的比值是的度數(shù)

)點(diǎn)在邊, ,繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)度后,如果點(diǎn)恰好落在初始的邊上的值

【答案】1①1;②75°;(260°或150°

【解析】試題分析:(1)①首先求出AC的長(zhǎng),進(jìn)而得出AC′=AC,∠C′=90°,得出

CD=AC′·tan30°=1;②利用AB′所圍圖形的面積與△ABC面積的比值是,得出n的度數(shù)即可;

2)分別根據(jù)等邊三角形的判定得出,∠APA1=60°,再利用CPPA=,得出∠CPA2=30°,即可得出答案.

解:①∵ , ,,又∵,,而,

②如圖,設(shè),則, ,旋轉(zhuǎn)角度數(shù)為,則,,

)如圖, ,

,又

,

,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)分別與AB、CD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AD,AE分別是ABC的高和中線(xiàn),AB3cm,AC4cmBC5cm,∠CAB90°,求:

1AD的長(zhǎng);

2ACEABE的周長(zhǎng)的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長(zhǎng)方形和正方形紙板(長(zhǎng)方形的寬與正方形的邊長(zhǎng)相等)作側(cè)面和底面,加工成如圖2所示的豎式和橫式兩種無(wú)蓋的長(zhǎng)方體紙箱.(加工時(shí)接縫材料不計(jì))

1 2

1)若該廠倉(cāng)庫(kù)里有1000張正方形紙板和2000張長(zhǎng)方形紙板。問(wèn)豎式和橫式紙箱各加工多少個(gè),恰好將庫(kù)存的兩種紙板全部用完?

2)該工廠原計(jì)劃用若干天加工紙箱2400個(gè),后來(lái)由于對(duì)方急需要貨,實(shí)際加工時(shí)每天加工速度是原計(jì)劃的1.5倍,這樣提前2天完成了任務(wù),問(wèn)原計(jì)劃每天加工紙箱多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,ACBD相交于點(diǎn)O,AOB=60°,BD=4,將ABC沿直線(xiàn)AC翻折后,點(diǎn)B落在點(diǎn)E處,那么SAED=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC點(diǎn)DABC內(nèi)的一點(diǎn),ADB=120°,ADC=90°ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°ACE,連接DE

1)求證AD=DE

2)求DCE的度數(shù);

3)若BD=1,AD,CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)全等多邊形的定義,我們把四個(gè)角,四條邊分別相等的兩個(gè)凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1

1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3BC4,ADCD5,B90,D 60,則A1D1 B1 , A1C1 (直接寫(xiě)出答案);

2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD BE于點(diǎn)O,連接F,求證:AOBFOE

3)如圖 2,若ABA1B1,BCB1C1,CDC1D1ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1

查看答案和解析>>

同步練習(xí)冊(cè)答案