【題目】二次函數(shù)的頂點是直線和直線的交點.
(1)用含的代數(shù)式表示頂點的坐標.
(2)①當時,的值均隨的增大而增大,求的取值范圍.
②若,且滿足時,二次函數(shù)的最小值為,求的取值范圍.
(3)試證明:無論取任何值,二次函數(shù)的圖象與直線總有兩個不同的交點.
【答案】(1) ;(2)①;②;(3)證明見解析.
【解析】
(1)解方程組即可求出頂點的坐標;
(2)①根據(jù)二次函數(shù)的增減性列式求解即可;②當時,拋物線為,函數(shù)的最小值為,所以可得,解之可求出的取值范圍;
(3)聯(lián)立兩個關(guān)系式,可得,然后根據(jù)一元二次方程根的判別式解答即可.
(1)由題意得,解得,
.
(2)①根據(jù)題意得,解得,
的取值范圍為.
②當時,頂點為,
拋物線為,函數(shù)的最小值為,
滿足時,二次函數(shù)的最小值為,
,
解得.
(3),
得,
,
,
拋物線的頂點坐標既可以表示為,又可以表示為.
,,
,
,
,
無論取任何值,二次函數(shù)的圖象與直線總有兩個不同的交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察猜想
如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數(shù)量關(guān)系為;
(2)問題解決
如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結(jié)BD,求BD的長;
(3)拓展延伸
如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過點P(2,3),函數(shù)y=ax+b經(jīng)過反比例函數(shù)圖象上一點Q(1,m),交x軸于A交y軸于B(A,B不重合).
(1)求出點Q的坐標.(2)若OA=OB,直接寫出b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點A在x軸上,OA=4,將OA繞點O逆時針旋轉(zhuǎn)120°至OB的位置.
(1)求經(jīng)過A、O、B三點的拋物線的函數(shù)解析式;
(2)在此拋物線的對稱軸上是否存在點P使得以P、O、B三點為頂點的三角形是等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由;
(3 )如圖2,OC=4,⊙A的半徑為2,點M是⊙A上的一個動點,求MC+OM的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,⊙M的半徑為2,圓心M的坐標為(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關(guān)于原點O對稱,則AB的最小值為( )
A. 3B. 4C. 6D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點A,B,M,N都在格點上.從點M,N中任取一點,與點A,B順次連接組成一個三角形,則下列事件是必然事件的是( )
A.所得三角形是銳角三角形B.所得三角形是直角三角形
C.所得三角形是鈍角三角形D.所得三角形是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的BC邊上一點,連接AD,作△ABD的外接圓,將△ADC沿直線AD折疊,點C的對應(yīng)點E落在⊙O上.
(1)求證:AE=AB.
(2)填空:
①當∠CAB=90°,cos∠ADB=,BE=2時,邊BC的長為 .
②當∠BAE= 時,四邊形AOED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在正方形ABCD中,點P沿邊DA從點D開始向點A以1cm/s的速度移動:同時點Q沿邊AB,BC從點A開始向點C以acm/s的速度移動,當點P移動到點A時,P,Q同時停止移動.設(shè)點P出發(fā)x秒時,△PAQ的面積為ycm2,y與x的函數(shù)圖象如圖②,線段EF所在的直線對應(yīng)的函數(shù)關(guān)系式為y=﹣4x+21,則a的值為( 。
A. 1.5B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com