【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°,AO=4,CO=2,接連接AD,BC、點H為BC中點,連接OH.
(1)如圖1所示,求證:OH=AD且OH⊥AD;
(2)將△COD繞點O旋轉到圖2所示位置時,線段OH與AD又有怎樣的關系,證明你的結論;
(3)請直接寫出線段OH的取值范圍.
【答案】(1)見解析;(2)結論:OH=AD,OH⊥AD.理由見解析;(3)1≤OH≤3.
【解析】
(1)只要證明△AOD≌△BOC,即可解決問題;
(2)延長HO交AD于K.延長OH到M,使得HM=OH,連接BM,CM..由△AOD≌△OBM(SAS)即可解決問題;
(3)如圖2中,在△OBM中求得2≤OM≤6即可解答
(1)如圖1中,設AD交OH于K.
∵△AOB和△COD均為等腰直角三角形,
∴OA=OB,OC=OD,∠AOB=90°,
∴△AOD≌△BOC(SAS),
∴BC=AD,∠OBC=∠DAC,
∵BH=HC,∠BOC=90°,
∴OH=BH=CH= BC,
∴OH= AD,∠HBO=∠HOB,
∵∠HOB+∠AOH=90°,
∴∠OAD+∠AOH=90°,
∴∠AKO=90°,
∴AD⊥OH.
(2)結論:OH= AD,OH⊥AD.
理由:延長HO交AD于K.延長OH到M,使得HM=OH,連接BM,CM.
∵BH=CH,OH=HM,
∴四邊形BOCM是平行四邊形,
∴OC=BM,OC∥BM,
∴∠MBO+∠BOC=180°,
∵∠AOB=∠COD=90°,
∴∠AOD+∠BOC=180°,
∴∠OBM=∠AOD,
∵OA=OB,
∴△AOD≌△OBM(SAS),
∴OM=AD,∠BOM=∠DAD,
∵∠BOM+∠AOK=90°,
∴∠OAD+∠AOK=90°,
∴∠OKA=90°,
∴OH⊥AD.
(3)如圖2中,在△OBM中,∵OB=OA=4,BM=OC=2,
∴4﹣2≤OM≤4+2,
∴2≤OM≤6,
∵OM=2OH,
∴1≤OH≤3.
科目:初中數學 來源: 題型:
【題目】國內豬肉價格不斷上漲,已知今年10月的豬肉價格比今年年初上漲了80%,李奶奶10月在某超市購買1千克豬肉花了72元錢.
(1)今年年初豬肉的價格為每千克多少元?
(2)某超市將進貨價為每千克55元的豬肉按10月價格出售,平均一天能銷售出100千克,隨著國家對豬肉價格的調控,超市發(fā)現(xiàn)豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬肉每天有1800元的利潤,并且盡可能讓顧客得到實惠,豬肉的售價應該下降多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車從地出發(fā),勻速駛向地,甲車以的速度行駛后,乙車才沿相同路線行駛,乙車先到達地并停留后,再以原速沿原路返回,直至與甲車相遇.在此過程中,兩車之間的距離與乙車行駛時間之間的函數關系如圖所示,下列說法錯誤的是( )
A.乙車的速度是B.
C.點的坐標是D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數=(≠0)圖象如圖所示,下列結論:①>0;②=0;③當≠1時,>;④>0;⑤若=,且≠,則=2.其中正確的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC中,∠A=30°,點P從點A出發(fā)以2cm/s的速度沿折線A→C→B運動,點Q從點A出發(fā)以vcm/s的速度沿AB運動,P,Q兩點同時出發(fā),當某一點運動到點B時,兩點同時停止運動.設運動時間為x(s),△APQ的面積為y(cm2),y關于x的函數圖象由C1,C2兩段組成,如圖2所示,有下列結論:①v=1;②sinB=;③圖象C2段的函數表達式為y=﹣x2+x;④△APQ面積的最大值為8,其中正確有( 。
A.①②B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,動點E以每秒1個單位長度的速度從點A開始沿邊AB向點B運動,動點F以每秒2個單位長度的速度從點B開始沿邊BC向點C運動,動點E比動點F先出發(fā)1秒,其中一個動點到達終點時,另一個動點也隨之停止運動設點F的運動時間為t秒.
(1)如圖1,連接DE,AF.若DE⊥AF,求t的值;
(2)如圖2,連結EF,DF.當t為何值時,△EBF∽△DCF?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解八年級男生“立定跳遠”成績的情況,隨機選取該年級部分男生進行測試,以下是根據測試成績繪制的統(tǒng)計圖表的一部分.
成績等級 | 頻數(人) | 頻率 |
優(yōu)秀 | 15 | 0.3 |
良好 | ||
及格 | ||
不及格 | 5 |
根據以上信息,解答下列問題
(1)被測試男生中,成績等級為“優(yōu)秀”的男生人數為 人,成績等級為“及格”的男生人數占被測試男生總人數的百分比為 %;
(2)被測試男生的總人數為 人,成績等級為“不及格”的男生人數占被測試男生總人數的百分比為 %;
(3)若該校八年級共有180名男生,根據調查結果,估計該校八年級男生成績等級為“良好”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國慶期間某外地旅行團來重慶的網紅景點打卡,游覽結束后旅行社對該旅行團做了一次“我最喜愛的巴渝景點”問卷調查(每名游客都填了調査表,且只選了一個景點),統(tǒng)計后發(fā)現(xiàn)洪崖洞、長江索道、李子壩輕軌站、磁器口榜上有名.其中選李子壩輕軌站的人數比選磁器口的少人;選洪崖洞的人數不僅比選磁器口的多,且為整數倍;選磁器口與洪崖洞的人數之和是選李子壩輕軌站與長江索道的人數之和的倍;選長江索道與洪崖洞的人數之和比選李子壩輕軌站與磁器口的人數之和多24人.則該旅行團共有_______人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年5月“亞洲文明對話大會”在北京成功舉辦,引起了世界人民的極大關注,某市一研究機構為了了解歲年齡段市民對本次大會的關注程度,隨機選取了100名年齡在該范圍內的市民進行了調查,并將收集到的數據制成了如下尚不完整的頻數分布表、頻數分布走訪圖和扇形統(tǒng)計圖:
組別 | 年齡段 | 頻數(人數) |
第1組 | 5 | |
第2組 | ||
第3組 | 35 | |
第4組 | 20 | |
第5組 | 15 |
(1)請直接寫出、的值及扇形統(tǒng)計圖中第3組所對應的圓心角的度數;
(2)請補全上面的頻數分布直方圖;
(3)假設該市現(xiàn)有歲的市民300萬人,問第4組年齡段關注本次大會的人數經銷商有多少萬人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com