【題目】如圖,E、F是平行四邊形ABCD的對(duì)角線AC上的兩點(diǎn),AE=CF.求證:四邊形DEBF是平行四邊形.

【答案】證明:連接BD,交AC于點(diǎn)O,
∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
即OE=OF,
∴四邊形DEBF是平行四邊形.

【解析】首先連接BD,交AC于點(diǎn)O,由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對(duì)角線互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根據(jù)對(duì)角線互相相平分的四邊形是平行四邊形.
【考點(diǎn)精析】本題主要考查了全等三角形的性質(zhì)和平行四邊形的判定與性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握全等三角形的對(duì)應(yīng)邊相等; 全等三角形的對(duì)應(yīng)角相等;若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是拋物線y=﹣2x2﹣8x+m上的點(diǎn),則(
A.y1<y2<y3
B.y3<y2<y1
C.y3<y1<y2
D.y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)據(jù)3,410,7,6的中位數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,過一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長與面積相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如,圖中過點(diǎn)P分別作x軸,y軸的垂線,與坐標(biāo)軸圍成矩形OAPB的周長與面積相等,則點(diǎn)P是和諧點(diǎn).
(1)點(diǎn)M(3,2) 和諧點(diǎn)(填“是”或“不是”);
(2)若點(diǎn)P(a,6)是和諧點(diǎn),a的值為
(3)若(2)中和諧點(diǎn)P(a,6)在y=﹣4x+m上,m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊的長分別是23,第三邊的長是方程x2-8x+12=0的根,則這個(gè)三角形的周長為( )

A. 7B. 11C. 711D. 89

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).

(1)請(qǐng)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);

(2)請(qǐng)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的△A2BC2;

(3)求出(2)中C點(diǎn)旋轉(zhuǎn)到C2點(diǎn)所經(jīng)過的路徑長(結(jié)果保留根號(hào)和π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(2x+3)2-25=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列乘法運(yùn)算中不能用平方差公式計(jì)算的是(   )

A. (x+1)(x-1) B. (x-1)(-x+1)

C. (-x+1)(-x-1) D. (x+1)(-x+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個(gè)不透明的布袋,甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,12;乙袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2,0;現(xiàn)從甲袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M坐標(biāo)為(xy).

1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);

2)求點(diǎn)Mx,y)在函數(shù)y=-x+1的圖象上的概率;

3)在平面直角坐標(biāo)系xOy中,⊙O的半徑是2,求過點(diǎn)Mx,y)能作⊙O的切線的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案