【題目】如圖,有一座拋物線形拱橋,在正常水位時水面AB的寬為20米,如果水位上升3米,則水面CD的寬是10米.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)當(dāng)水位在正常水位時,有一艘寬為6米的貨船經(jīng)過這里,船艙上有高出水面3.6米的長方體貨物(貨物與貨船同寬).問:此船能否順利通過這座拱橋?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若OA=5,OD=1,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,
求拋物線與軸的交點坐標(biāo);
求拋物線與軸的兩個交點及兩個交點間的距離.
求拋物線與軸的交點及與軸交點所圍成的三角形面積.
把拋物線改為頂點式,說明頂點和對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明為了檢驗兩枚六個面分別刻有點數(shù)1、 2、3、4、5、6的正六面體骰子的質(zhì)量是否都合格,在相同的條件下,同時拋兩枚骰子20 00 0次,結(jié)果發(fā)現(xiàn)兩個朝上面的點數(shù)和是7的次數(shù)為20次.你認為這兩枚骰子質(zhì)量是否都合格(合格標(biāo)準(zhǔn)為:在相同條件下拋骰子時,骰子各個面朝上的機會相等)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象中所反映的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又 去早餐店吃早餐,然后散步走回家,其中 x 表示時間,y 表示張強離家的距離。根據(jù)圖象提供的信息,以下四個說法錯誤的是( )
A. 體育場離張強家2.5千米 B. 張強在體育場鍛煉了15分鐘
C. 體育場離早餐店4千米 D. 張強從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,直線交y軸于點A,交x軸于點B,點C坐標(biāo)為,作點C關(guān)于直線AB的對稱點F,連接BF和OF,OF交AC于點E,交AB于點M.
(1)求證:.
(2)如圖(2),連接CF交AB于點H,求證:.
(3)如圖(3),若,G為x軸負半軸上一動點,連接MG,過點M作GM的垂線交FB的延長線于點D,GB-BD的值是否為定值?若是,求其值;若不是,求其取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ ABC中,∠ABC和∠ACB的平分線相交于點G,過點G作EF ∥BC交AB于E,交AC于F,過點G作GD⊥ AC于D,下列四個結(jié)論:①EF = BE+CF;②∠BGC= 90 °+∠A;③點G到△ ABC各邊的距離相等;④設(shè)GD =m,AE + AF =n,則S△AEF=mn.其中正確的結(jié)論有( )
A.1 個B.2 個C.3 個D.4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
材料一:數(shù)學(xué)上有一種根號內(nèi)又帶根號的數(shù),它們能通過完全平方式及二次根式的性質(zhì)化去一層(或多層)根號,如:
材料二:配方法是初中數(shù)學(xué)思想方法中的一種重要的解題方法,配方法的最終目的就是配成完全平方式, 利用完全平方式來解決問題,它的應(yīng)用非常廣泛,在解方程、化簡根式、因式分解等方面都經(jīng)常 用到.
如:
∵,∴,即
∴的最小值為
閱讀上述材料解決下面問題:
(1) , ;
(2)求的最值;
(3)已知,求的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是函數(shù)y=圖象上的一點,已知B(﹣,﹣),C(,).試利用性質(zhì):“y=圖象上的任意一點P都滿足|PB﹣PC|=2”求解下面問題:作∠BAC的內(nèi)角平分線AE,過B作AE的垂線交AE于F.當(dāng)點A在函數(shù)y=圖象上運動時,點F也總在一圖形上運動,該圖形為( )
A. 圓 B. 雙曲線 C. 拋物線 D. 直線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com