【題目】如圖,在一張平行四邊形紙片ABCD中,畫一個菱形,甲、乙兩位同學的畫法如下:甲:以B,A為圓心,AB長為半徑作弧,分別交BC,AD于點E,F,則四邊形ABEF為菱形;乙:作∠A,∠B的平分線AE,BF,分別交BC于點E,交AD于點F,則四邊形ABEF是菱形;關(guān)于甲、乙兩人的畫法,下列判斷正確的是( 。
A. 僅甲正確B. 僅乙正確
C. 甲、乙均正確D. 甲、乙均錯誤
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交BE的延長線于F,且AF=DC,連接CF.
(1)求證:D是BC的中點;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l上有一點O,點A,B同時從O出發(fā),在直線l上分別向左,向右作勻速運動,且A,B的速度之比是1:2,設(shè)運動時間為ts,
(1)當t=2s時,AB=24cm,此時,
①在直線l上畫出A,B兩點運動2s時的位置,并回答點A運動的速度是 cm/s,點B的運動速度是 cm/s;
②若點P為直線l上一點,且PA=OP+PB,求 的值;
(2)在(1)的條件下,若A,B同時按原速度向左運動,再經(jīng)過幾秒,OA=3OB?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點D,E分別在AC,BC上,且∠CDE=∠B,將△CDE沿DE折疊,點C恰好落在AB邊上的點F處.若AC=8,AB=10,則CD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解):A,B,C為數(shù)軸上三點,若點C到A的距離CA是點C到B的距離CB的2倍,我們就稱點C是(A,B)的好點.例如,如圖1,點A表示的數(shù)為-1,點B表示的數(shù)為2.表示1的點C到點A的距離CA是2,到點B的距離CB是1,那么點C是(A,B)的好點;又如,表示0的點D到點A的距離DA是1,到點B的距離DB是2,那么點D就不是(A,B)的好點,但點D是(B,A)的好點.
(知識運用):(1)如圖1,表示數(shù)______和_______的點是(A,B)的好點;
(2)如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為-2,點N所表示的數(shù)為4.
①表示數(shù)______的點是(M,N)的好點;
②表示數(shù)______的點是(N,M)的好點;
(3)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為-20,點B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點B出發(fā),以2個單位每秒的速度向左運動.當t為何值時,P、A和B中恰有一個點為其余兩點的好點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+4的圖象與x軸交于兩點A、B,與y軸交于點C,且A(﹣1,0)、B(4,0).
(1)求此二次函數(shù)的表達式;
(2)如圖1,拋物線的對稱軸m與x軸交于點E,CD⊥m,垂足為D,點F(﹣,0),動點N在線段DE上運動,連接CF、CN、FN,若以點C、D、N為頂點的三角形與△FEN相似,求點N的坐標;
(3)如圖2,點M在拋物線上,且點M的橫坐標是1,將射線MA繞點M逆時針旋轉(zhuǎn)45°,交拋物線于點P,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為直徑,AB=4,C、D為圓上兩個動點,N為CD中點,CM⊥AB于M,當C、D在圓上運動時保持∠CMN=30°,則CD的長( )
A. 隨C、D的運動位置而變化,且最大值為4 B. 隨C、D的運動位置而變化,且最小值為2
C. 隨C、D的運動位置長度保持不變,等于2 D. 隨C、D的運動位置而變化,沒有最值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點和直線( 不同時為0),則點到直線的距離可用公式 計算.
例如.求點 到直線的距離.
解:由直線可知
∴
根據(jù)以上材料,解答下列問題:
(1) 求點 到直線的距離;
(2) 求點 到直線的距離,并說明點與直線的位置關(guān)系;
(3)已知直線 與直線平行,求兩條平行線間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知A(0,5), B(a,b),且a,b滿足b=+-1.
(1)如圖,求線段AB的長;
(2)如圖,直線CD與x軸、y軸正半軸分別交于點C,D,∠OCD=45°,第四象限的點P(m,n)在直線CD上,且mn=-6,求OP2-OC2的值;
(3)如圖,若點D(1,0),求∠DAO +∠BAO的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com