精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.

(1)求證:∠DAF=∠CDE;

(2)求證:△ADF∽△DEC;

(3)若AE=6,AD=8,AB=7,求AF的長.

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

1)先根據四邊形ABCD是平行四邊形,得出∠B=ADC,再由∠AFE=B可得出∠AFE=ADC,通過等量代換可得出∠DAF=CDE
2)由四邊形ABCD是平行四邊形,可得出ADBC,∠ADE=CED,再根據∠DAF=∠CDE,故可得出結論;
3)先由四邊形ABCD是平行四邊形,可得出ADBCCD=AB=4,再由AEBC,得出AEAD,由勾股定理求出DE的長,由△ADF∽△DEC可得出兩三角形的邊對應成比例,進而可得出AF的長.

解:(1)證明:

∵四邊形ABCD是平行四邊形

∴∠B=ADC

∵∠AFE=B,∴∠AFE=ADC

∵∠AFE=1+2,∠ADC=3+2

∴∠1+2=3+2,即∠1=3

∴∠DAF=CDE

2)證明:∵四邊形ABCD是平行四邊形

ADBC,∴∠2=4

由(1)得∠1=3 ∴△ADF∽△DEC

(3)AEBC,∴AEAD

DE=

由(2)可知:△ADF∽△DEC,CD=AB=7

AF=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉得到ADE(點B,C的對應點分別是DE),當點EBC邊上時,連接BD,若∠ABC30°,∠BDE10°,求∠EAC

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A,B兩點在數軸上,點A表示的數為-10,OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))

1)數軸上點B對應的數是______

2)經過幾秒,點M、點N分別到原點O的距離相等?

3)當點M運動到什么位置時,恰好使AM=2BN?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】初一(1)班針對你最喜愛的課外活動項目對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

根據以上信息解決下列問題:

(1) ,

(2)扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數為 ;

(3)從選航模項目的名學生中隨機選取名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的名學生中恰好有名男生、名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點E、F分別是正方形ABCD的邊CDAD上的點,且CE=DF,AEBF相交于點O,下面四個結論:(1AE=BF,(2AEBF,(3AO=OE,(4SAOB=S四邊形DEOF,其中正確結論的序號是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,正方形OABC的頂點AC分別在x軸和y軸正半軸上,點B坐標為(3,3),拋物線y=﹣x2+bx+c過點A、C,交x軸負半軸于點D,與BC邊的另一個交點為E,拋物線的頂點為M,對稱軸交x軸于點N

1)求拋物線的函數關系式;

2)點P在直線MN上,求當PE+PA的值最小時點P的坐標;

3)如圖2,探索在x軸是否存在一點F,使∠CFO=CDO﹣CAO?若存在,求點F的坐標;不存在,說明理由;

4)將拋物線沿y軸方向平移m個單位后,頂點為Q,若QO平分∠CQN,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB交于點D,則AD的長為( ).

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用一定數目的點或大小相同的圓在等距離的排列下可以形成一個等邊三角形數陣.古希臘著名數學家畢達哥拉斯用數,,,,,……這些數量的(石子),都成功的排成了等邊三角形數陣..

(問題提出)結果等于多少?

在圖1所示的等邊三角形數陣中,前行有個圓圈,前行有個圓圈,即,前行有個圓圈,即,,則前行所有圓圈個數總和為

將圖1旋轉至圖2,觀察這兩個三角形數陣中同一行圓圈個數(如第行的圓圈個數分別為個,個),發(fā)現(xiàn)同一行圓圈個數之和均為___________個,由此可得兩個圖前行圓圈個數總和為:___________,因此,___________.

(問題延伸)結果等于多少?

3

4

在圖3所示的等邊三角形數陣中,第行圓圈中的數為,即,第行兩個圓圈中數字的和為.,第個圓圈中數字的和為(共個)..這樣,該三角形數陣中所有圓圈中數字的和為.

將該三角形數陣經兩次旋轉可得如圖4所示的三個三角形數陣,觀察這三個三角形數陣中各行同一位置上圓圈中的數字(如第行的第一個圓圈中的數字分別為,),發(fā)現(xiàn)相同位置上三個圓圈中數字之和均為___________,由此可得,這三個三角形數陣所有圓圈中數字的總和為:___________,因此,___________.

(規(guī)律應用)

根據以上發(fā)現(xiàn),計算:的結果為___________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一筆直的海岸線l上有AB兩個觀測站,A在B的正東方向,AB=2(單位:km).有一艘小船在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(結果都保留根號)

(1)求點P到海岸線l的距離;

(2)小船從點P處沿射線AP的方向航行一段時間后,到點C處,此時,從B測得小船在北偏西15°的方向.求點C與點B之間的距離.

查看答案和解析>>

同步練習冊答案