【題目】已知⊙O的半徑為13,弦ABCDAB=24CD=10,則四邊形ACDB的面積是( 。

A.119B.289C.77119D.119289

【答案】D

【解析】

分兩種情況進(jìn)行討論:①弦ABCD在圓心同側(cè);②弦ABCD在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.

解:①當(dāng)弦ABCD在圓心同側(cè)時(shí),如圖1,

AB=24cm,CD=10cm,

AE=12cmCF=5cm,

OA=OC=13cm,

EO=5cmOF=12cm,

EF=12-5=7cm;

∴四邊形ACDB的面積

②當(dāng)弦ABCD在圓心異側(cè)時(shí),如圖2

AB=24cm,CD=10cm

.AE=12cm,CF=5cm,

OA=OC=13cm

EO=5cm,OF=12cm,

EF=OF+OE=17cm.

∴四邊形ACDB的面積

∴四邊形ACDB的面積為119289.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,則一次函數(shù)y=﹣bx4ac+b2與反比例函數(shù)在同一坐標(biāo)系內(nèi)的圖象大致為( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聊城市某黨支部在精準(zhǔn)扶貧活動(dòng)中,給結(jié)對(duì)幫扶的貧困家庭贈(zèng)送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價(jià)格比甲種樹苗貴10元,用600元購買乙種樹苗的棵數(shù)恰好與用480元購買甲種樹苗的棵數(shù)相同.

1)求甲、乙兩種樹苗每棵的價(jià)格各是多少元?

2)在實(shí)際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時(shí),甲種樹苗的售價(jià)比第一次購買時(shí)降低了10%,乙種樹苗的售價(jià)不變,如果再次購買兩種樹苗的總費(fèi)用不超過2000元,那么他們最多可購買多少棵乙種樹苗?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,弧AB所對(duì)的圓心角∠AOB=108°,點(diǎn)C為⊙O上的動(dòng)點(diǎn),以AO、AC為邊構(gòu)造AODC.當(dāng)∠A_____°時(shí),線段BD最長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】河西中學(xué)九年級(jí)共有9個(gè)班,300名學(xué)生,學(xué)校要對(duì)該年級(jí)學(xué)生數(shù)學(xué)學(xué)科學(xué)業(yè)水平測(cè)試成績(jī)進(jìn)行抽樣分析,請(qǐng)按要求回答下列問題:

收集數(shù)據(jù)

(1)若從所有成績(jī)中抽取一個(gè)容量為36的樣本,以下抽樣方法中最合理的是   

①在九年級(jí)學(xué)生中隨機(jī)抽取36名學(xué)生的成績(jī);

②按男、女各隨機(jī)抽取18名學(xué)生的成績(jī);

③按班級(jí)在每個(gè)班各隨機(jī)抽取4名學(xué)生的成績(jī).

整理數(shù)據(jù)

(2)將抽取的36名學(xué)生的成績(jī)進(jìn)行分組,繪制頻數(shù)分布表和成績(jī)分布扇形統(tǒng)計(jì)圖如下.請(qǐng)根據(jù)圖表中數(shù)據(jù)填空:

C類和D類部分的圓心角度數(shù)分別為   °、   °;

②估計(jì)九年級(jí)A、B類學(xué)生一共有   名.

成績(jī)(單位:分)

頻數(shù)

頻率

A類(80~100)

18

B類(60~79)

9

C類(40~59)

6

D類(0~39)

3

分析數(shù)據(jù)

(3)教育主管部門為了解學(xué)校教學(xué)情況,將河西、復(fù)興兩所中學(xué)的抽樣數(shù)據(jù)進(jìn)行對(duì)比,得下表:

學(xué)校

平均數(shù)(分)

極差(分)

方差

A、B類的頻率和

河西中學(xué)

71

52

432

0.75

復(fù)興中學(xué)

71

80

497

0.82

你認(rèn)為哪所學(xué)校本次測(cè)試成績(jī)較好,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一條直線上,點(diǎn)M,N,F分別為AB,ED,AD的中點(diǎn),∠B=∠EDC=45°,

(1)求證MF=NF

(2)當(dāng)∠B=∠EDC=30°,A,C,D在同一條直線上或不在同一條直線上,如圖②,圖③這兩種情況時(shí),請(qǐng)猜想線段MF,NF之間的數(shù)量關(guān)系。(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兒童節(jié)前,某玩具商店根據(jù)市場(chǎng)調(diào)查,用3000元購進(jìn)一批兒童玩具,上市后很快脫銷,接著又用5400元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了10元.

(1)求第一批玩具每套的進(jìn)價(jià)是多少元?

(2)如果這兩批玩具每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套玩具售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸,且直線l與拋物線y軸分別交于點(diǎn)A,BC,點(diǎn)D為拋物線的頂點(diǎn).若點(diǎn)E的坐標(biāo)為,點(diǎn)A的橫坐標(biāo)為1.

(1)線段AB的長(zhǎng)度等于________;

(2)點(diǎn)P為線段AB上方拋物線上的一點(diǎn),過點(diǎn)PAB的垂線交AB于點(diǎn)H,點(diǎn)Fy軸上一點(diǎn),當(dāng)的面積最大時(shí),求的最小值;

(3)(2)的條件下,刪除拋物線在直線PH左側(cè)部分圖象并將右側(cè)部分圖象沿直線PH翻折,與拋物線在直線PH右側(cè)部分圖象組成新的函數(shù)M的圖象.現(xiàn)有平行于FH的直線,若直線與函數(shù)M的圖象有且只有2個(gè)交點(diǎn),求t的取值范圍(請(qǐng)直接寫出t的取值范圍,無需解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙、丙三個(gè)景區(qū)是人們節(jié)假日游玩的熱點(diǎn)景區(qū),某學(xué)校對(duì)九(5)班學(xué)生“五一”小長(zhǎng)假隨父母到這三個(gè)景區(qū)游玩的計(jì)劃做了全面調(diào)查,調(diào)查分四個(gè)類別A:游三個(gè)景區(qū):B:游兩個(gè)景區(qū);C:游一個(gè)景區(qū):D:不到這三個(gè)景區(qū)游玩,現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完全的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖如下:

請(qǐng)結(jié)合圖中信息解答下列問題:

1)九(5)班現(xiàn)有學(xué)生人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求在扇形統(tǒng)計(jì)圖中表示“B類別”的扇形的圓心角的度數(shù);

3)根據(jù)調(diào)查顯示,小劉和小何都選擇“C類別”,求他倆游玩的恰好是同一景區(qū)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案