【題目】為了提高學(xué)生漢字書寫的能力,增強(qiáng)保護(hù)漢字的意識,某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測試方法是:聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學(xué)生成績?yōu)閤(分),且50≤x<100,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:
組別 | 成績x(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 50≤x<60 | 2 | 0.04 |
二 | 60≤x<70 | 10 | 0.2 |
三 | 70≤x<80 | 14 | b |
四 | 80≤x<90 | a | 0.32 |
五 | 90≤x<100 | 8 | 0.16 |
請根據(jù)表格提供的信息,解答以下問題:
(1)直接寫出表中a= , b=;
(2)請補(bǔ)全右面相應(yīng)的頻數(shù)分布直方圖;
(3)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 .
(4)請根據(jù)得到的統(tǒng)計數(shù)據(jù),簡要分析這些同學(xué)的漢字書寫能力,并為提高同學(xué)們的書寫漢字能力提一條建議(所提建議不超過20字)
【答案】
(1)16,0.28
(2)補(bǔ)全相應(yīng)的頻數(shù)分布直方圖如下:
(3)48%
(4)解:由頻數(shù)分布直方圖可知,50人主要分布在60~90分,90~100分人數(shù)較少,
故應(yīng)著重培養(yǎng)高分段學(xué)生
【解析】解:(1)本次調(diào)查的總?cè)藬?shù)為2÷0.04=50(人),
∴a=50×0.32=16,b=14÷50=0.28,
所以答案是:16,0.28;(3)本次大賽的優(yōu)秀率為0.32+0.16=0.48=48%,
所以答案是:48%;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解頻數(shù)分布直方圖(特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計圖與頻數(shù)分布直方圖)).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市荸薺喜獲豐收,某生產(chǎn)基地收獲荸薺40噸.經(jīng)市場調(diào)查,可采用批發(fā)、零售、加工銷售三種銷售方式,這三種銷售方式每噸荸薺的利潤如下表:
銷售方式 批發(fā) 零售 加工銷售
利潤(百元/噸) 12 22 30
設(shè)按計劃全部售出后的總利潤為y百元,其中批發(fā)量為x噸,且加工銷售量為15噸.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若零售量不超過批發(fā)量的4倍,求該生產(chǎn)基地按計劃全部售完荸薺后獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南山植物園中現(xiàn)有A、B兩個園區(qū),已知A園區(qū)為長方形,長為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長為(x+3y)米.
(1)請用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡;
(2)現(xiàn)根據(jù)實(shí)際需要對A園區(qū)進(jìn)行整改,長增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長比寬多350米,且整改后兩園區(qū)的周長之和為980米.
①求x、y的值;
②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費(fèi)用與吸引游客的收益如表:
求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8,點(diǎn)E在BC邊上,且BE:EC=1:3.動點(diǎn)P從點(diǎn)B出發(fā),沿BA運(yùn)動到點(diǎn)A停止.過點(diǎn)E作EF⊥PE交邊AD或CD于點(diǎn)F,設(shè)M是線段EF的中點(diǎn),則在點(diǎn)P運(yùn)動的整個過程中,點(diǎn)M運(yùn)動路線的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若 = ,則S△EDH=13S△CFH .
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形△ABC的腰長AB=AC=25,BC=40,動點(diǎn)P從B出發(fā)沿BC向C運(yùn)動,速度為10單位/秒.動點(diǎn)Q從C出發(fā)沿CA向A運(yùn)動,速度為5單位/秒,當(dāng)一個點(diǎn)到達(dá)終點(diǎn)的時候兩個點(diǎn)同時停止運(yùn)動,點(diǎn)P′是點(diǎn)P關(guān)于直線AC的對稱點(diǎn),連接P′P和P′Q,設(shè)運(yùn)動時間為t秒.
(1)若當(dāng)t的值為m時,PP′恰好經(jīng)過點(diǎn)A,求m的值.
(2)設(shè)△P′PQ的面積為y,求y與t之間的函數(shù)關(guān)系式(m<t≤4)
(3)是否存在某一時刻t,使PQ平分角∠P′PC?存在,求相應(yīng)的t值,不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點(diǎn)
(1)求點(diǎn)A、B坐標(biāo)和∠BAO度數(shù)
(2)點(diǎn)C、D分別是線段OA、AB上一動點(diǎn)(不與端點(diǎn)重合),且CD=DA,設(shè)線段OC的長度為x ,,請求出y關(guān)于x的函數(shù)關(guān)系式以及定義域
(3)點(diǎn)C、D分別是射線OA、射線BA上一動點(diǎn),且CD=DA,當(dāng)ΔODB為等腰三角形時,求C的坐標(biāo)(第(3)小題直接寫出分類情況和答案,不用過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①b<0;②4a+2b+c<0;③a﹣b+c>0;④(a+c)2<b2 . 其中正確的結(jié)論是( )
A.①②
B.①③
C.①③④
D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com