【題目】在一個不透明的袋子中裝有除顏色外其余均相同的5個小球,其中紅球3個,黑球2個.

(1)若先從袋中取出xx>0)個紅球,再從袋子中隨機摸出1個球,將摸出黑球記為事件A,若A為必然事件,則x的值為   ;

(2)若從袋中隨機摸出2個球,正好紅球、黑球各1個,用畫樹狀圖或列表法求這個事件的概率.

【答案】(1)3;(2)

【解析】

(1)由在一個不透明的袋子中裝有僅顏色不同的5個小球,其中紅球3個,黑球2個,根據(jù)必然事件的定義即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與從袋中隨機摸出2個球,正好紅球、黑球各1個的情況,再利用概率公式即可求得答案.

1)摸出黑球為必然事件,

x=3,

故答案為:3;

(2)3個紅球記為A1,A2,A3,2個黑球記為B1,B2

畫樹狀圖得:

∵共有20種等可能的結果,從袋中隨機摸出2個球,正好紅球、黑球各1個的有12種情況,

∴從袋中隨機摸出2個球,正好紅球、黑球各1個的概率為=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果M個不同的正整數(shù),對其中的任意兩個數(shù),這兩個數(shù)的積能被這兩個數(shù)的和整除,則稱這組數(shù)為M個數(shù)的自然數(shù)組,如(3,6)為兩個數(shù)的自然數(shù)組,因為(3×6)能被(3+6)整除;又如(15,30,60)為三個數(shù)的自然數(shù)組,因為(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…

(1)求證:2nnn﹣2)(n≥3,n為整數(shù))組成的數(shù)組是兩個數(shù)的自然數(shù)組;

(2)若(4a,5a,6a)是三個數(shù)的自然數(shù)組,求滿足條件的三位正整數(shù)a,并判斷(4a+5,5a+5,6a+5)是否為自然數(shù)組.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示.(每個小方格都是邊長為1個單位長度的正方形)

(1)畫出△ABC關于原點對稱的△A'B'C';

(2)將△A'B'C'繞點C'順時針旋轉90°,畫出旋轉后得到的△ABC″,并直接寫出此過程中線段C'A'掃過圖形的面積.(結果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtACB中,ACB=90°,AC=BC,D是AB上的一個動點(不與點A,B重合),連接CD,將CD繞點C順時針旋轉90°得到CE,連接DE,DE與AC相交于點F,連接AE.下列結論:①△ACE≌△BCD;②BCD=25°,則∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,則AF=.其中正確的結論是______.(填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經(jīng)過A,C兩點,連接BC.

(1)求直線l的解析式;

(2)若直線x=m(m0)與該拋物線在第三象限內交于點E,與直線l交于點D,連接OD.當ODAC時,求線段DE的長;

(3)取點G(0,﹣1),連接AG,在第一象限內的拋物線上,是否存在點P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,直線PQ同側有兩點M,N,點T在直線PQ上,若∠MTPNTQ,則稱點TM,N在直線PQ上的投射點.

(1)如圖②,在RtABC中,∠B=60°,D為斜邊AB的中點,EAC的中點.求證:點DC,E在直線AB上的投射點;

(2)如圖③,在正方形網(wǎng)格中,已知點A,BC三點均在格點上,請僅用沒有刻度的直尺在AC上畫出點P,在BC上畫出點Q,使A,PBC上的投射點Q滿足CQ=2BQ;

(3)如圖④,在RtABC中,∠C=90°,ACBC,在AB,BC邊上是否分別存在點D,E,使點DE,CAB上的投射點,點EA,DBC上的投射點?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線交于點O,點E、F分別在AB、BC上(AEBE),且EOF=90°,OE、DA的延長線交于點M,OF、AB的延長線交于點N,連接MN.

(1)求證:OM=ON.

(2)若正方形ABCD的邊長為4,E為OM的中點,求MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若反比例函數(shù)y與一次函數(shù)y2x4的圖象都經(jīng)過點A(a,2)

(1)求反比例函數(shù)y的表達式;

(2)當反比例函數(shù)y的值大于一次函數(shù)y2x4的值時,求自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,二次函數(shù)y=x2﹣2x﹣3的部分圖象與x軸交于點A、

B(AB的左邊),與y軸交于點C,連接BC,D為頂點.

(1)求∠OBC的度數(shù);

(2)在x軸下方的拋物線上是否存在一點Q,使ABQ的面積等于5?如存在,求Q點的坐標,如不存在,說明理由;

(3)點P是第四象限的拋物線上的一個動點(不與點D重合),過點PPF⊥x軸交BC于點F,求線段PF長度的最大值.

查看答案和解析>>

同步練習冊答案