【題目】規(guī)定:sin﹣x=﹣sinx,cos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣

②sin75°=;

③sin2x=2sinxcosx

④sinx﹣y=sinxcosy﹣cosxsiny

【答案】②③④

【解析】

根據(jù)題意,得,①cos(60°)=cos60°= ,故錯誤;

sin75°=sin(45°+30°)=sin45°×cos30°+cos45°×sin30°= ,故正確;

sin2x=sinx﹒cosx+cosx·sinx=2sinx·cosx,故正確;

sin(xy)sinx·cos-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故正確,

故答案為:②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為5cm,弦AB8cm,P為弦AB上的一動點,若OP的長度為整數(shù),則滿足條件的點P____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解該校學(xué)生的課余活動情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成折線統(tǒng)計圖(部分)和扇形統(tǒng)計圖(部分)如下:

(1)在這次研究中,一共調(diào)查了 名學(xué)生.

(2)補全頻數(shù)分布折線圖;

(3)該校共有2200名學(xué)生,估計該校學(xué)生中愛好閱讀的人數(shù)大約是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,IABC的內(nèi)心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是

A.線段DB繞點D順時針旋轉(zhuǎn)一定能與線段DC重合

B.線段DB繞點D順針旋轉(zhuǎn)一定能與線段DI熏合

C.CAD繞點A順時針旋轉(zhuǎn)一定能與DAB重合

D.線段ID繞點I順時針旋轉(zhuǎn)一定能與線段IB重合

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點O,過OEFBC分別交AB、ACE、F.

1)求證:EF=BE+CF.

2)在△ABC中,∠ABC的角平分線與∠ACB相鄰的外角的平分線相交于點O,過OEFBC分別交AB、ACEF,請你畫出圖形(不要求尺規(guī)作圖),并直接寫出EFBE、CF之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,防洪大堤的橫斷面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同學(xué)在大堤上A點處用高1.5m的測量儀測出高壓電線桿CD頂端D的仰角為30°,己知地面BC寬30m,求高壓電線桿CD的高度(結(jié)果保留三個有效數(shù)字,1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:在小學(xué)已經(jīng)學(xué)過“正方形的四條邊都相等,正方形的四個內(nèi)角都是直角”,試?yán)蒙鲜鲋R,并結(jié)合已學(xué)過的知識解答下列問題:

如圖1,在正方形ABCD中,G是射線DB上的一個動點(點G不與點D重合),以CG為邊向下作正方形CGEF.

1)當(dāng)點G在線段BD上時,求證:;

2)連接BF,試探索:BF,BGAB的數(shù)量關(guān)系,并說明理由;

3)若AB=aa是常數(shù)),如圖2,過點FFTBC,交射線DB于點T,問在點G的運動過程中,GT的長度是否會隨著G點的移動而變化?若不變,請求出GT的長度;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點P在一次函數(shù)y=kx+bk,b為常數(shù),且k0,b0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.

1k的值是

2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于AB兩點,且與反比例函數(shù)y=圖象交于C,D兩點(點C在第二象限內(nèi)),過點CCE⊥x軸于點E,記S1為四邊形CEOB的面積,S2△OAB的面積,若=,則b的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點D是半圓O上一點,點C 的中點,CEAB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC

1)求證:GPGD;

2)求證:P是線段AQ的中點;

3)連接CD,若CD2,BC4,求O的半徑和CE的長.

查看答案和解析>>

同步練習(xí)冊答案