【題目】在平面直角坐標(biāo)系中,對于任意點P,給出如下定義:若⊙P的半徑為1,則稱⊙P為點P的“伴隨圓”.
(1)已知,點,
①點在點P的“伴隨圓” (填“上”或“內(nèi)”或“外”);
②點在點P的“伴隨圓” (填“上”或“內(nèi)”或“外”);
(2)若點P在軸上,且點P的“伴隨圓”與直線相切,求點P的坐標(biāo);
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局對該市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;
(2)圖②中C級所占的圓心角的度數(shù)是__________;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該市近20000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達標(biāo)(達標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過點(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過點(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿足: ,點D為x正半軸上一動點
(1)求A、B兩點的坐標(biāo)
(2)如圖,∠ADO的平分線交y軸于點C,點 F為線段OD上一動點,過點F作CD的平行線交y軸于點H,且∠AFH=45°, 判斷線段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點作等腰△ADO,若∠DBA=30°,直接寫出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△中,∠,點是邊上一點,以為直徑的⊙與邊相切于點,與邊交于點,過點作⊥于點,連接.
(1)求證:;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點P(0,2)的對稱點P1,以B為對稱中心作點P1的對稱點P2,以C為對稱中心作點P2的對稱點P3,以D為對稱中心作點P3的對稱點P4,…,重復(fù)操作依次得到點P1,P2,…,則點P2010的坐標(biāo)是( 。
A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一張長為8cm,寬為7cm的矩形紙片ABCD,現(xiàn)要剪下一個腰長為6cm的等腰三角形(要求:等腰三角形的一個頂點與矩形的一個頂點重合,其余的兩個頂點在矩形的邊上),則剪下的等腰三角形的面積為_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,雙曲線和直線y=kx+b交于A,B兩點,點A的坐標(biāo)為(﹣3,2),BC⊥y軸于點C,且OC=6BC.
(1)求雙曲線和直線的解析式;
(2)直接寫出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結(jié)論,其中不正確的是( 。
A. 當(dāng)m=﹣3時,函數(shù)圖象的頂點坐標(biāo)是(,)
B. 當(dāng)m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當(dāng)m≠0時,函數(shù)圖象經(jīng)過同一個點
D. 當(dāng)m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com