【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象過點A(4,1)與正比例函數(shù)()的圖象相交于點B(,3),與軸相交于點C.
(1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;
(2)若點D是點C關(guān)于軸的對稱點,且過點D的直線DE∥AC交BO于E,求點E的坐標(biāo);
(3)在坐標(biāo)軸上是否存在一點,使.若存在請求出點的坐標(biāo),若不存在請說明理由.
【答案】(1)一次函數(shù)表達(dá)式為:;正比例函數(shù)的表達(dá)式為:;(2)E(-2,-3);(3)P點坐標(biāo)為(,0)或(,0)或(0,2)或(0,-2).
【解析】
(1)將點A坐標(biāo)代入可求出一次函數(shù)解析式,然后可求點B坐標(biāo),將點B坐標(biāo)代入即可求出正比例函數(shù)的解析式;
(2)首先求出點D坐標(biāo),根據(jù)DE∥AC設(shè)直線DE解析式為:,代入點D坐標(biāo)即可求出直線DE解析式,聯(lián)立直線DE解析式和正比例函數(shù)解析式即可求出點E的坐標(biāo);
(3)首先求出△ABO的面積,然后分點P在x軸和點P在y軸兩種情況討論,設(shè)出點P坐標(biāo),根據(jù)列出方程求解即可.
解:(1)將點A(4,1)代入得,
解得:b=5,
∴一次函數(shù)解析式為:,
當(dāng)y=3時,即,
解得:,
∴B(2,3),
將B(2,3)代入得:,
解得:,
∴正比例函數(shù)的表達(dá)式為:;
(2)∵一次函數(shù)解析式為:,
∴C(0,5),
∴D(0,-5),
∵DE∥AC,
∴設(shè)直線DE解析式為:,
將點D代入得:,
∴直線DE解析式為:,
聯(lián)立,解得:,
∴E(-2,-3);
(3)設(shè)直線與x軸交于點F,
令y=0,解得:x=5,
∴F(5,0),
∵A(4,1),B(2,3),
∴,
當(dāng)點P在x軸上時,設(shè)P點坐標(biāo)為(m,0),
由題意得:,
解得:,
∴P點坐標(biāo)為(,0)或(,0);
當(dāng)點P在y軸上時,設(shè)P點坐標(biāo)為(0,n),
由題意得:,
解得:,
∴P點坐標(biāo)為(0,2)或(0,-2),
綜上所示:P點坐標(biāo)為(,0)或(,0)或(0,2)或(0,-2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰三角形ABC中,∠ABC=90度,D是AC邊上的動點,連結(jié)BD,E、F分別是AB、BC上的點,且DE⊥DF.、(1)如圖1,若D為AC邊上的中點.
(1)填空:∠C= ,∠DBC= ;
(2)求證:△BDE≌△CDF.
(3)如圖2,D從點C出發(fā),點E在PD上,以每秒1個單位的速度向終點A運(yùn)動,過點B作BP∥AC,且PB=AC=4,點E在PD上,設(shè)點D運(yùn)動的時間為t秒(0≤1≤4)在點D運(yùn)動的過程中,圖中能否出現(xiàn)全等三角形?若能,請直接寫出t的值以及所對應(yīng)的全等三角形的對數(shù),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點是上一點.
(1)如圖,平分.求證:;
(2)如圖,點在線段上,且,,求證:.
(3)如圖,,過點作交的延長線于點,連接,過點作交于,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線交AB于點E,交AC的延長線于點F.
(1)求證:DE⊥AB;
(2)若tan∠BDE=, CF=3,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.
(1)求甲選擇A部電影的概率;
(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題提出)
求證:如果一個定圓的內(nèi)接四邊形對角線互相垂直,那么這個四邊形每組對邊的平方和是一個定值.
(從特殊入手)
我們不妨設(shè)定圓O的半徑是R,⊙O的內(nèi)接四邊形ABCD中,AC⊥BD.請你在圖①中補(bǔ)全特殊位置時的圖形,并借助于所畫圖形探究問題的結(jié)論.
(問題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣10經(jīng)過點A(12,0)和B(a,﹣5),雙曲線y=經(jīng)過點B.
(1)求直線y=kx﹣10和雙曲線y=的函數(shù)表達(dá)式;
(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運(yùn)動,速度為每秒1個單位長度,點C的運(yùn)動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,
①當(dāng)點C在雙曲線上時,求t的值;
②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值.
③當(dāng)DC=時,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,與的平分線交于點,過點作交于點,交于點,那么下列結(jié)論:
①是等腰三角形;②;
③若,;④.
其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長,《西游記》《三國演義》《水滸傳》《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某校要求沒有讀過四大名著的學(xué)生進(jìn)行選讀,將《西游記》、《三國演義》、《水滸傳》《紅樓夢》依次記為A、B、C、D,每本名著被選到的機(jī)會均等.
(1)學(xué)生小紅計劃選讀兩本名著,她恰好選讀《西游記》和《水滸傳》這兩本名著的概率為多少?
(2)若學(xué)生小明和小剛各計劃選讀一本名著,他們兩人恰好選讀同一本名著的概率為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com