【題目】若∠C=α,∠EAC+∠FBC=β
(1)如圖①,AM是∠EAC的平分線(xiàn),BN是∠FBC的平分線(xiàn),若AM∥BN,則α與β有何關(guān)系?并說(shuō)明理由.
(2)如圖②,若∠EAC的平分線(xiàn)所在直線(xiàn)與∠FBC平分線(xiàn)所在直線(xiàn)交于P,試探究∠APB與α、β的關(guān)系是______.(用α、β表示)
(3)如圖③,若α≥β,∠EAC與∠FBC的平分線(xiàn)相交于P1,∠EAP1與∠FBP1的平分線(xiàn)交于P2 ;依此類(lèi)推,則∠P5=______.(用α、β表示)
【答案】 ∠APB=α-β ∠P5=α-β
【解析】試題分析:(1)根據(jù)角平分線(xiàn)的定義表示出∠MAC+∠NCB,再根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等可得∠C=∠MAC+∠NBC;
(2)根據(jù)角平分線(xiàn)的定義表示出∠PAC+∠PBC,利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和列式整理即可得解;
(3)根據(jù)(2)的結(jié)論分別表示出∠P1、∠P2…,從而得解.
試題解析:
解:(1)∵AM是∠EAC的平分線(xiàn),BN是∠FBC的平分線(xiàn),
∴∠MAC+∠NCB=∠EAC+∠FBC=β,
∵AM∥BN,
∴∠C=∠MAC+∠NCB,
即α=β;
(2)∵∠EAC的平分線(xiàn)與∠FBC平分線(xiàn)相交于P,
∴∠PAC+∠PBC=∠EAC+∠FBC=β,
∴∠C=∠APB+(∠PAC+∠PBC),
∴α=∠APB+β,
即∠APB=α-β;
(3)由(2)得,∠P1=∠C-(∠PAC+∠PBC)=α-β,
∠P2=∠P1-(∠P2AP1+∠P2BP1),
=α-β-β=α-β,
∠P3=α-β-β=α-β,
∠P4=α-β-β=α-β,
∠P5=α-β-β=α-β.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某件商品的成本價(jià)為15元,據(jù)市場(chǎng)調(diào)查得知,每天的銷(xiāo)量y(件)與價(jià)格x(元)有下列關(guān)系:
(1)根據(jù)表中數(shù)據(jù),在直角坐標(biāo)系中描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn),并畫(huà)出圖象;
(2)猜測(cè)確定y與x間的關(guān)系式.
(3)設(shè)總利潤(rùn)為W元,試求出W與x之間的函數(shù)關(guān)系式,若售價(jià)不超過(guò)30元,求出當(dāng)日的銷(xiāo)售單價(jià)定為多少時(shí),才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AD⊥BC于點(diǎn)D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點(diǎn)F為線(xiàn)段BC上的任意一點(diǎn),當(dāng)△EFC為直角三角形時(shí),求∠BEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究應(yīng)用:用“∪”、“∩”定義兩種新運(yùn)算:對(duì)于兩數(shù)a、b,規(guī)定a∪b=10a×10b,a∩b=10a÷10b,例如:3∪2=103×102=105,3∩2=103÷102=10.
(1) 求: (2017∪983) 的值
(2) 求: (2018∩2016) 的值;
(3) 當(dāng)x為何值時(shí), (x∪5)的值與 (23∩17)的值相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點(diǎn)C落在斜邊AB上的點(diǎn)E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線(xiàn)段AD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,九年級(jí)(1)班的小明與小艷兩位同學(xué)去操場(chǎng)測(cè)量旗桿DE的高度,已知直立在地面上的竹竿AB的長(zhǎng)為3 m.某一時(shí)刻,測(cè)得竹竿AB在陽(yáng)光下的投影BC的長(zhǎng)為2 m.
(1)請(qǐng)你在圖中畫(huà)出此時(shí)旗桿DE在陽(yáng)光下的投影,并寫(xiě)出畫(huà)圖步驟;
(2)在測(cè)量竹竿AB的影長(zhǎng)時(shí),同時(shí)測(cè)得旗桿DE在陽(yáng)光下的影長(zhǎng)為6 m,請(qǐng)你計(jì)算旗桿DE的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來(lái)水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.
(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來(lái)完成.則該工程施工費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB與x軸交于點(diǎn)A(1,0),與y軸交于點(diǎn)B(0,﹣2).
(1)求直線(xiàn)AB的解析式;
(2)若直線(xiàn)AB上的點(diǎn)C在第一象限,且S△BOC=2,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(3分)如圖,坐標(biāo)原點(diǎn)O為矩形ABCD的對(duì)稱(chēng)中心,頂點(diǎn)A的坐標(biāo)為(1,t),AB∥x軸,矩形A′B′C′D′與矩形ABCD是位似圖形,點(diǎn)O為位似中心,點(diǎn)A′,B′分別是點(diǎn)A,B的對(duì)應(yīng)點(diǎn),.已知關(guān)于x,y的二元一次方程(m,n是實(shí)數(shù))無(wú)解,在以m,n為坐標(biāo)(記為(m,n)的所有的點(diǎn)中,若有且只有一個(gè)點(diǎn)落在矩形A′B′C′D′的邊上,則kt的值等于( )
A. B.1 C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com