【題目】已知等腰三角形△ABC,BC邊上的高恰好等于BC邊長的一半,則∠BAC的度數(shù)是(  )

A.90°B.90°75°

C.90° 75°15°D.90°75°15°60°

【答案】C

【解析】

本題要分情況討論,根據(jù)等腰三角形的性質(zhì)來①當(dāng)AD在三角形的內(nèi)部,②AD在三角形的外部以,③BC邊為等腰三角形的底邊三種情況.

解:如下圖,分三種情況:①AB=BC,ADBC,AD在三角形的內(nèi)部,

由題意知,AD=BC=AB,

sinB=

∴∠B=30°,∠C=

∴∠BAC=C=75°

AC=BC,ADBCAD在三角形的外部,

由題意知,AD=BC=AC,

sinACD=

∴∠ACD=30°=B+CAB

∵∠B=CAB,

∴∠BAC=15°

AC=BC,ADBCBC邊為等腰三角形的底邊,

由等腰三角形的底邊上的高與底邊上中線,頂角的平分線重合知,點DBC的中點,

由題意知,AD=BC=CD=BD,

∴△ABD,△ADC均為等腰直角三角形,

∴∠BAD=CAD=45°,

∴∠BAC=90°,

∴∠BAC的度數(shù)為90°75°15°

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長方形和正方形紙板(長方形的寬與正方形的邊長相等)作側(cè)面和底面,加工成如圖2所示的豎式和橫式兩種無蓋的長方體紙箱.(加工時接縫材料不計)

1 2

1)若該廠倉庫里有1000張正方形紙板和2000張長方形紙板。問豎式和橫式紙箱各加工多少個,恰好將庫存的兩種紙板全部用完?

2)該工廠原計劃用若干天加工紙箱2400個,后來由于對方急需要貨,實際加工時每天加工速度是原計劃的1.5倍,這樣提前2天完成了任務(wù),問原計劃每天加工紙箱多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座橋如圖,橋下水面寬度AB是20米,高CD是4米.要使高為3米的船通過,則其寬度須不超過多少米.

(1)如圖1,若把橋看做是拋物線的一部分,建立如圖坐標(biāo)系.

①求拋物線的解析式;

②要使高為3米的船通過,則其寬度須不超過多少米?

(2)如圖2,若把橋看做是圓的一部分.

①求圓的半徑;

②要使高為3米的船通過,則其寬度須不超過多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小李做摸球?qū)嶒,她將盒子里面的球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):

(1)請估計:當(dāng)實驗次數(shù)為5000次時,摸到白球的頻率將會接近 ;(精確到0.1)

(2)假如你摸一次,你摸到白球的概率P(摸到白球)=

(3)試驗估算這個不透明的盒子里黑球有多少只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)環(huán)保部門為了提高宣傳垃圾分類的實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類情況,進(jìn)行整理后,繪制了如下兩幅不完整的統(tǒng)計圖:

根據(jù)統(tǒng)計圖解答下列問題:

1)求抽樣調(diào)查的生活垃圾的總噸數(shù);

2)求扇形統(tǒng)計圖中,“D”部分所對應(yīng)的圓心角的度數(shù),并將條形統(tǒng)計圖補(bǔ)充完整;

3)調(diào)查發(fā)現(xiàn),在可回收物中廢紙垃圾約占,每回收 1 噸廢紙可再造 0.85 噸的再生紙,假設(shè)該城市每月生產(chǎn)的生活垃圾為10000 噸,且全部分類處理,那么每月回收的廢紙可制成再生紙多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)全等多邊形的定義,我們把四個角,四條邊分別相等的兩個凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1

1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3BC4,ADCD5,B90,D 60,則A1D1 ,B1 , A1C1 (直接寫出答案);

2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD BE于點O,連接F,求證:AOBFOE;

3)如圖 2,若ABA1B1BCB1C1,CDC1D1,ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=﹣x+5的圖象與反比例函數(shù)k≠0)在第一象限的圖象交于A(1,n)和B兩點.

(1)求反比例函數(shù)的解析式及點B坐標(biāo);

(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=-x+5的值大于反比例函數(shù)k≠0)的值時,寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,EF分別為邊AB、CD的中點,BD是對角線,AG//DBCB的延長線于G

1)求證:△ADE≌△CBF

2)若四邊形BEDF是菱形,求證四邊形AGBD是矩形.

查看答案和解析>>

同步練習(xí)冊答案