【題目】如圖1,AB=AC,EF=EG,△ABC≌△EFG,AD⊥BC于點D,EH⊥FG于點H
(1) 直接寫出AD、EH的數(shù)量關(guān)系:___________________
(2) 將△EFG沿EH剪開,讓點E和點C重合
① 按圖2放置△EHG,將線段CD沿EH平移至HN,連接AN、GN,求證:AN⊥GN
② 按圖3放置△EHG,B、C(E)、H三點共線,連接AG交EH于點M.若BD=1,AD=3,求CM的長度
【答案】(1)AD=EH;(2)見解析;(3)CM=2.
【解析】
(1)由△ABC≌△EFG,可知面積相等,利用面積公式可得高相等;
(2)如圖所示,設(shè)AN、CH交于點P,CH、NG交于點O,由CD平移到NH可知四邊形CDNH為平行四邊形,所以CH=DN=AD,可得出△AND為等腰三角形,再由GH=CD=NH可得出△GHN為等腰三角形,由于兩個等腰三角形頂角相等,可推出底角相等,在△OPN和△OGH中,可由∠OPN=∠PND=∠NGH,可推出∠PNO=90°,則AN⊥GN;
(3由AD⊥BH,GH⊥BH,可得AD∥GH,所以,再由DH=DC+EH=1+3=4,
可求出DM=3,∴CM=3-1=2.
解:(1)∵△ABC≌△EFG,
∴BC=FG,
∴
∴AD=EH
(2)如圖所示,設(shè)AN、CH交于點P,CH、NG交于點O
CD平移到NH可得四邊形CDNH為平行四邊形
∴CH=DN,∠CDN=∠CHN,DN∥CH
又∵EH=AD,∴AD=DN,即△AND為等腰三角形
∵GH=CD=NH,∴△GHN為等腰三角形,
∵∠ADN=∠ADC+∠CDN=90°+∠CDN
∠NHG=∠CHG+∠CHN=90°+∠CHN
而∠CDN=∠CHN
∴∠ADN=∠NHG,
∴,
∴∠AND=∠NGH
又∵DN∥CH,∴∠AND=∠NPH,∴∠NGH=∠NPH
在△OPN和△OGH中
∠NPH=∠NGH,∠PON=∠GOH,
∴∠PNO=∠OGH=90°,
∴AN⊥GN
(3)由△ABC≌△EFG可得CD=BD=1,EH=AD=3
∵AD⊥BH,GH⊥BH
∴AD∥GH,∴,∴
又∵DH=DC+EH=1+3=4
∴DM=3,
∴CM=DM-DC=3-1=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) y=-x+b 與反比例函數(shù)y=(x>0)的圖象交于 A,B 兩點,與 x 軸、y軸分別交于C,D 兩點,連接 OA,OB,過 A 作 AE⊥x 軸于點 E,交 OB 于點F,設(shè)點 A 的橫坐標(biāo)為 m. 若 S△OAF+S 四邊形 EFBC=4,則 m 的值是( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列帶有坐標(biāo)系的網(wǎng)格中,△ABC的頂點都在邊長為1的小正方形的頂點上
(1) 直接寫出坐標(biāo):A__________,B__________
(2) 畫出△ABC關(guān)于y軸的對稱的△DEC(點D與點A對應(yīng))
(3) 用無刻度的直尺,運用全等的知識作出△ABC的高線BF(保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸相交于點,直線經(jīng)過點,與軸交于點,與軸交于點,與直線相交于點.
求直線的函數(shù)關(guān)系式;
點是上的一點,若的面積等于的面積的倍,求點的坐標(biāo).
設(shè)點 的坐標(biāo)為 ,是否存在 的值使得 最小?若存在,請求出點 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,CM切⊙O于點C,∠BCM=60°,則∠B的正切值是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ECD都是等邊三角形
(1)如圖1,若B、C、D三點在一條直線上,求證:BE=AD;
(2)保持△ABC不動,將△ECD繞點C順時針旋轉(zhuǎn),使∠ACE=90°(如圖2),BC與DE有怎樣的位置關(guān)系?說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com