【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過(guò)點(diǎn)C,且ADMND,BEMNE

1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:ADC≌△CEB;DE=AD+BE

2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=ADBE;

3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問(wèn)DE、AD、BE具有怎樣的等量關(guān)系?請(qǐng)寫(xiě)出這個(gè)等量關(guān)系,并加以證明.

【答案】1)①證明見(jiàn)解析;②證明見(jiàn)解析;(2)證明見(jiàn)解析;(3DE=BEAD

【解析】

1)根據(jù)同角的余角相等得到∠ACD=CBE,即可證明△ADC≌△CEB;

2)根據(jù)全等三角形的性質(zhì)得到AD=CEDC=EB,即可證明DE=ADBE;

3)與(1)的證明方法類(lèi)似,證的△ADC≌△CEB得出AD=CE,DC=EB即可得出DE、AD、BE的等量關(guān)鍵.

1)∵∠ACB=90°

ACD+BCE=90°

又∵ADMN,BEMN

∴∠ADC=CEB=90°

∴∠BCE+CBE=90°

∴∠ACD=CBE

在△ADC和△CEB中,

∴△ADC≌△CEB

AD=CE,DC=BE

DE=DC+CE=BE+AD;

2)在△ADC和△CEB中,

∴△ADC≌△CEB

AD=CE,DC=EB

DE=CEDC=ADEB

3DE=BEAD

在△ADC和△CEB中,

∴△ADC≌△CEB

AD=CEDC=BE

DE=DCCE=BEAD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宿州市高新區(qū)某電子電路板廠到安徽大學(xué)從2018年應(yīng)屆畢業(yè)生中招聘公司職員,對(duì)應(yīng)聘者的專(zhuān)業(yè)知識(shí)、英語(yǔ)水平、參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等三項(xiàng)進(jìn)行測(cè)試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按532的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專(zhuān)業(yè)知識(shí)

英語(yǔ)水平

參加社會(huì)實(shí)踐與

社團(tuán)活動(dòng)等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人專(zhuān)業(yè)知識(shí)的平均分為85分,方差為12.5,四人英語(yǔ)水平的平均分為87.5分,方差為6.25,請(qǐng)你求出四人參加社會(huì)實(shí)踐與社團(tuán)活動(dòng)等的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對(duì)大學(xué)生應(yīng)聘者有何建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:三角形ABC,A=90°,AB=AC,DBC的中點(diǎn).

(1)如圖,E、F分別是ABAC上的點(diǎn),BE=AF,求證:DEF為等腰直角三角形.

(2)EF分別為AB,CA延長(zhǎng)線上的點(diǎn),仍有BE=AF,其他條件不變,那么,DEF是否仍為等腰直角三角形?畫(huà)出圖形,寫(xiě)出結(jié)論不證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子中有1個(gè)紅球和2個(gè)黑球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球,記錄顏色后放回,攪勻,再?gòu)闹腥我饷?/span>1個(gè)球,像這樣有放回地先后摸球2.摸出紅球得2分,摸出黑球得1.

(1)第一次摸出黑球的概率是多少?

(2)兩次摸球所得總分為4分的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015鎮(zhèn)江)

活動(dòng)1:在一只不透明的口袋中裝有標(biāo)號(hào)為1,2,33個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭,甲、乙、丙三位同學(xué)丙乙的順序依次從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,計(jì)算甲勝出的概率.(注:丙乙表示丙第一個(gè)摸球,甲第二個(gè)摸球,乙最后一個(gè)摸球)

活動(dòng)2:在一只不透明的口袋中裝有標(biāo)號(hào)為12,344個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭,?qǐng)你對(duì)甲、乙、丙三名同學(xué)規(guī)定一個(gè)摸球順序: ,他們按這個(gè)順序從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,則第一個(gè)摸球的同學(xué)勝出的概率等于 ,最后一個(gè)摸球的同學(xué)勝出的概率等于

猜想:在一只不透明的口袋中裝有標(biāo)號(hào)為1,2,3,nn為正整數(shù))的n個(gè)小球,這些球除標(biāo)號(hào)外都相同,充分?jǐn)噭颍、乙、丙三名同學(xué)從袋中各摸出一個(gè)球(不放回),摸到1號(hào)球勝出,猜想:這三名同學(xué)每人勝出的概率之間的大小關(guān)系.

你還能得到什么活動(dòng)經(jīng)驗(yàn)?(寫(xiě)出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷(xiāo)售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷(xiāo)售、增加盈利盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出4件,若商場(chǎng)平均每天盈利2100元,每件襯衫應(yīng)降價(jià)多少元?請(qǐng)完成下列問(wèn)題:

(1)未降價(jià)之前,某商場(chǎng)襯衫的總盈利為    元.

(2)降價(jià)后,設(shè)某商場(chǎng)每件襯衫應(yīng)降價(jià)x元,則每件襯衫盈利   元,平均每天可售出   件(用含x的代數(shù)式進(jìn)行表示)

(3)請(qǐng)列出方程,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)EAD上,連接BE、CE.

(1)求證:BE=CE

(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,BF ⊥AC,垂足為F,原題設(shè)其它條件不變.求證:∠CAD=∠CBF

(3)(2)的條件下,若BAC=45,判斷△CFE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段圓弧與長(zhǎng)度為的正方形網(wǎng)格的交點(diǎn)是A、B、C

(1)請(qǐng)完成以下操作:

①以點(diǎn)O為原點(diǎn),垂直和水平方向?yàn)檩S,網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連接AD、CD;

(2)請(qǐng)?jiān)冢?/span>1)的基礎(chǔ)上,完成下列填空:

①⊙D的半徑   (結(jié)果保留根號(hào)).

②點(diǎn)(-2,0)在⊙D   ;(填”、“內(nèi)”、“”)

③∠ADC的度數(shù)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案