【題目】如圖,AB為⊙O的直徑,CD切⊙O于點(diǎn)C,與BA的延長(zhǎng)線交于點(diǎn)D,OEAB交⊙O于點(diǎn)E,連接CA、CE、CB,CEAB于點(diǎn)G,過點(diǎn)AAFCE于點(diǎn)F,延長(zhǎng)AFBC于點(diǎn)P.

(Ⅰ)求∠CPA的度數(shù);

(Ⅱ)連接OF,若AC=,D=30°,求線段OF的長(zhǎng).

【答案】(Ⅰ)45°;(Ⅱ)

【解析】

(Ⅰ)連接AE,由OA=OBOEAB知∠OEG+∠AEC=45°,再證∠OEG=∠BAP、∠AEC=∠ABP,在△ABP中利用三角形外角性質(zhì)可得答案;

(Ⅱ)由切線性質(zhì)及∠D=30°可得∠AOC=∠OAC=60°,在Rt△ABC中求得BC=3,由∠APC=45°、∠ACP=90°得CP=AC=,可知BP=3﹣,證OF為△ABP中位線可得答案.

解:()如圖,連接AE

OEAB,OA=OE,

∴∠AOE=90°,AEO=45°,

∴∠OEG+OGE=90°,

AFCE

∴∠AFG=90°,

∴∠FAG+AGF=90°,

∵∠AGF=OGE,

∴∠OEG=BAP,

∵∠AEC=ABC,

∴∠APC=ABC+BAP=AEC+OEG=AEO=45°;

(Ⅱ)連接OC,

CD是⊙O的切線,

∴∠DCO=90°,

∵∠D=30°,

∴∠AOC=60°,

OA=OC,

∴∠BAC=60°,

RtABC中,AC=,

BC=ACtanBAC=×=3,

由(1)知,AC=CP=,

BP=BCCP=3﹣,

AFCE

AF=PF,

OA=OB,

OF=BP=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,過頂點(diǎn)A的直線DEBC,∠ABC,∠ACB的平分線分別交DE于點(diǎn)E、D,若AC=3, BC=5,則DE的長(zhǎng)為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個(gè)正根,則實(shí)數(shù)a的取值范圍是( 。

A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(2,3)和直線y=x,

(1)點(diǎn)A關(guān)于直線y=x的對(duì)稱點(diǎn)為點(diǎn)B,點(diǎn)A關(guān)于原點(diǎn)(0,0)的對(duì)稱點(diǎn)為點(diǎn)C;寫出點(diǎn)B、C的坐標(biāo);

(2)若點(diǎn)D是點(diǎn)B關(guān)于原點(diǎn)(0,0)的對(duì)稱點(diǎn),判斷四形ABCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場(chǎng)決定開展歡度端午,回饋顧客的讓利促銷活動(dòng),對(duì)部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三學(xué)生開展踢毽子比賽活動(dòng),每班派5名學(xué)生參加,按團(tuán)體總分多少排列名次,在規(guī)定時(shí)間內(nèi)每人踢100個(gè)以上(含100)為優(yōu)秀.下表是成績(jī)最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè)):

1號(hào)

2號(hào)

3號(hào)

4號(hào)

5號(hào)

總數(shù)

甲班

100

98

110

89

103

500

乙班

89

100

95

119

97

500

經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)兩班總數(shù)相等.此時(shí)有學(xué)生建議,可以通過考察數(shù)據(jù)中的其他信息作為參考.

請(qǐng)你回答下列問題:

(1)填空:甲班的優(yōu)秀率為   ,乙班的優(yōu)秀率為   ;

(2)填空:甲班比賽數(shù)據(jù)的中位數(shù)為   ,乙班比賽數(shù)據(jù)的中位數(shù)為   ;

(3)填空:估計(jì)兩班比賽數(shù)據(jù)的方差較小的是   班(填甲或乙)

(4)根據(jù)以上三條信息,你認(rèn)為應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?簡(jiǎn)述你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的周長(zhǎng)為20.

1)尺規(guī)作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);

2)設(shè)AB的垂直平分線與BA交于點(diǎn)D,與BC交于點(diǎn)E,若AD4,求ACE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過學(xué)習(xí)三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長(zhǎng)的比值相互唯一確定,因此邊長(zhǎng)與角的大小之間可以相互轉(zhuǎn)化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖1,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sadA=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.根據(jù)上述角的正對(duì)定義,解答下列問題:

(1)sad60°= ;

(2)對(duì)于0°<∠A<180°,∠A的正對(duì)值sadA的取值范圍是 ;

(3)如圖②,已知sinA=,其中∠A為銳角,試求sadA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案