【題目】如圖,已知的直徑,、為的三等分點(diǎn),、為上兩點(diǎn),且,求的值.
【答案】
【解析】
延長(zhǎng)ME交⊙O于G,根據(jù)圓的中心對(duì)稱性可得FN=EG,過點(diǎn)O作OH⊥MG于H,連接MO,根據(jù)圓的直徑求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根據(jù)垂徑定理可得MG=2MH,從而得解.
如圖,延長(zhǎng)ME交⊙O于G,
∵E、F為AB的三等分點(diǎn),∠MEB=∠NFB=60°,
∴FN=EG,
過點(diǎn)O作OH⊥MG于H,連接MO,
∵⊙O的直徑AB=6,
∴OE=OA-AE=×6-×6=3-2=1,
OM=×6=3,
∵∠MEB=60°,
∴OH=OEsin60°=1×=,
在Rt△MOH中,MH= =,
根據(jù)垂徑定理,MG=2MH=2×=,
即EM+FN=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC與點(diǎn)O在10×10的網(wǎng)格中的位置如圖所示
(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的圖形;
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°后的圖形;
(3)若⊙M能蓋住△ABC,則⊙M的半徑最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了改造小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻的最大可使用長(zhǎng)度12m)的空地上建造一個(gè)矩形綠化帶.除靠墻一邊(AD)外,用長(zhǎng)為32m的柵欄圍成矩形ABCD.設(shè)綠化帶寬AB為xm,面積為Sm2,
(1)求S與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)綠化帶的面積能達(dá)到128m2嗎?若能,請(qǐng)求出AB的長(zhǎng)度;若不能,請(qǐng)說明理由;
(3)當(dāng)x為何值時(shí),滿足條件的綠化帶面積最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與y軸交于點(diǎn)C,與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),過點(diǎn)B作BE⊥x軸于點(diǎn)E,已知A點(diǎn)坐標(biāo)是(2,4),BE=2.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)連接OA、OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個(gè)無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).當(dāng)豎直擺放圓柱形桶至少( )個(gè)時(shí),網(wǎng)球可以落入桶內(nèi).
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,E為AB邊上一點(diǎn),過點(diǎn)E作EF⊥AB交對(duì)角線BD于點(diǎn)F.連接EC交BD于點(diǎn)G.取DF的中點(diǎn)H,并連接AH.若AH=,EG=,則四邊形AEFH的面積為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.
(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;
(2)若點(diǎn)P在線段AB上,如圖2,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),判斷△ACE的形狀,并說明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點(diǎn)B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中△ACE面積的最小值為4,請(qǐng)直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象交x軸于A(-1, 0),B(4, 0)兩點(diǎn),交y軸于點(diǎn)C.動(dòng)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿AB方向運(yùn)動(dòng),過點(diǎn)M作MN⊥x軸交直線BC于點(diǎn)N,交拋物線于點(diǎn)D,連接AC.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求二次函數(shù)的表達(dá)式;
(2)連接BD,當(dāng)時(shí),求△DNB的面積;
(3)在直線MN上存在一點(diǎn)P,當(dāng)△PBC是以∠BPC為直角的等腰直角三角形時(shí),直接寫出此時(shí)點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF=BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com