如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣4,0),B(﹣1,3),C(﹣3,3)
(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對(duì)稱軸為直線l,該圖象上的點(diǎn)P(m,n)在第三象限,其關(guān)于直線l的對(duì)稱點(diǎn)為M,點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為N,若四邊形OAPN的面積為20,求m、n的值.
解:(1)將A(﹣4,0),B(﹣1,3),C(﹣3,3)代入y=ax2+bx+c得:
,解得:a=﹣1,b=﹣4,c=0。
∴此二次函數(shù)的解析式為y=﹣4x2﹣4x。
(2)由題可知,M、N點(diǎn)坐標(biāo)分別為(﹣4﹣m,n),(m+4,n).
∵四邊形OAPF的面積=(OA+FP)÷2×|n|=20,即4|n|=20,解得|n|=5。
∵點(diǎn)P(m,n)在第三象限,∴n=﹣5。
∴﹣m2﹣4m+5=0,解得m=﹣5或m=1(舍去)。
∴所求m、n的值分別為﹣5,﹣5.
解析試題分析:(1)因?yàn)閽佄锞y=﹣x2+bx+c過點(diǎn)A(﹣4,0),B(﹣1,3),C(﹣3,3)代入求出其解析式即可。
(2)由題可知,M、N點(diǎn)坐標(biāo)分別為(﹣4﹣m,n),(m+4,n),根據(jù)四邊形OAPF的面積為20,從而求出其m,n的值!
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長(zhǎng)的最小值;
(3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年浙江義烏10分)小明合作學(xué)習(xí)小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,△DEF均為等腰直角三角形,各頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F(xiàn)(,).
(1)他們將△ABC繞C點(diǎn)按順時(shí)針方向旋轉(zhuǎn)450得到△A1B1C.請(qǐng)你寫出點(diǎn)A1,B1的坐標(biāo),并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點(diǎn)按順時(shí)針方向旋轉(zhuǎn)450,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上.請(qǐng)你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個(gè)點(diǎn)旋轉(zhuǎn)45,若旋轉(zhuǎn)后的三角形恰好有兩個(gè)頂點(diǎn)落在拋物線上,則可求出旋轉(zhuǎn)后三角形的直角頂點(diǎn)P的坐標(biāo).請(qǐng)你直接寫出點(diǎn)P的所有坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個(gè)單位,設(shè)平移后拋物線的頂點(diǎn)為D,與x軸的交點(diǎn)為A、B,與原拋物線的交點(diǎn)為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時(shí),求此時(shí)k的值;
②是否存在這樣的k值,使得點(diǎn)O、P、D三點(diǎn)恰好在同一條直線上?若存在,求出k值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,在?ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B﹣A﹣D﹣A運(yùn)動(dòng),沿B﹣A運(yùn)動(dòng)時(shí)的速度為每秒13個(gè)單位長(zhǎng)度,沿A﹣D﹣A運(yùn)動(dòng)時(shí)的速度為每秒8個(gè)單位長(zhǎng)度.點(diǎn)Q從點(diǎn) B出發(fā)沿BC方向運(yùn)動(dòng),速度為每秒5個(gè)單位長(zhǎng)度.P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ.
(1)當(dāng)點(diǎn)P沿A﹣D﹣A運(yùn)動(dòng)時(shí),求AP的長(zhǎng)(用含t的代數(shù)式表示).
(2)連結(jié)AQ,在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B﹣A﹣D運(yùn)動(dòng)過程中,當(dāng)線段PQ掃過的圖形(陰影部分)被線段BR分成面積相等的兩部分時(shí)t的值.
(4)設(shè)點(diǎn)C、D關(guān)于直線PQ的對(duì)稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,直線y=x+4與坐標(biāo)軸分別交于A、B兩點(diǎn),過A、B兩點(diǎn)的拋物線為y=﹣x2+bx+c.點(diǎn)D為線段AB上一動(dòng)點(diǎn),過點(diǎn)D作CD⊥x軸于點(diǎn)C,交拋物線于點(diǎn)E.
(1)求拋物線的解析式.
(2)當(dāng)DE=4時(shí),求四邊形CAEB的面積.
(3)連接BE,是否存在點(diǎn)D,使得△DBE和△DAC相似?若存在,求此點(diǎn)D坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(,0)和點(diǎn)B(1,),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在對(duì)稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對(duì)稱軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=∠MFO時(shí),請(qǐng)直接寫出線段BM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對(duì)稱軸是直線
(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時(shí),求M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
如圖,△ABC的三個(gè)頂點(diǎn)分別為A(1,2),B(2,5),C(6,1).若函數(shù)在第一象限內(nèi)的圖像與△ABC有交點(diǎn),則的取值范圍是
A.2≤≤ | B.6≤≤10 | C.2≤≤6 | D.2≤≤ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com