精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.

(1)求BD的長
(2)求圖中陰影部分的面積

【答案】
(1)

解:∵AB為⊙O的直徑,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.連OD,∵OD=OB,∴∠ODB=∠ABD=45°.

∴∠BOD=90°.∴BD==5cm


(2)

解:S陰影=S扇形﹣S△OBD=π52×5×5=cm2


【解析】(1)由AB為⊙O的直徑,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.連OD,得到等腰直角三角形,根據勾股定理即可得到結論;
(2)根據S陰影=S扇形﹣S△OBD即可得到結論.
(1)由AB為⊙O的直徑,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.連OD,得到等腰直角三角形,根據勾股定理即可得到結論;
(2)根據S陰影=S扇形﹣S△OBD即可得到結論.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,點C在線段AB的延長線上,ACBCDAB的反向延長線上,BDDC.

(1)在圖上畫出點C和點D的位置;

(2)設線段AB長為x,則BC__ __,AD__ __(用含x的代數式表示)

(3)AB12 cm,求線段CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點D在邊AB上,點E在邊AC上,CE=BD,連接CD,BE,BECD相交于點F.

(1)如圖1,若△ACD為等邊三角形,且CE=DF,求∠CEF的度數;

(2)如圖2,若AC=AD,求證:EF=FB;

(3)如圖3,在(2)的條件下,若∠CFE=45°,BCD的面積為4,求線段CD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列判斷正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,O為AC中點,EF過點O且EF⊥AC分別交DC于點F,交AB于點E,點G是AE中點且∠AOG=30°,給出以下結論: ①∠AFC=120°;
②△AEF是等邊三角形;
③AC=3OG;
④SAOG= SABC
其中正確的是 . (把所有正確結論的序號都選上)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,二次函數y=ax2+bx的圖象過點A(﹣1,3),頂點B的橫坐標為1.

(1)求這個二次函數的表達式;
(2)點P在該二次函數的圖象上,點Q在x軸上,若以A、B、P、Q為頂點的四邊形是平行四邊形,求點P的坐標;
(3)如圖3,一次函數y=kx(k>0)的圖象與該二次函數的圖象交于O、C兩點,點T為該二次函數圖象上位于直線OC下方的動點,過點T作直線TM⊥OC,垂足為點M,且M在線段OC上(不與O、C重合),過點T作直線TN∥y軸交OC于點N.若在點T運動的過程中, 為常數,試確定k的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,BD為⊙O的直徑,BD與AC相交于點H,AC的延長線與過點B的直線相交于點E,且∠A=∠EBC.
(1)求證:BE是⊙O的切線;
(2)已知CG∥EB,且CG與BD、BA分別相交于點F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在平面直角坐標系xOy中,二次函數y=﹣x2+mx+n的圖象經過點A(3,0),B(m,m+1),且與y軸相交于點C.
(1)求這個二次函數的解析式并寫出其圖象頂點D的坐標;
(2)求∠CAD的正弦值;
(3)設點P在線段DC的延長線上,且∠PAO=∠CAD,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】探究題
(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E,使DE=AD,再連接BE(或將△ACD繞著點D逆時針旋轉180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三邊的關系即可判斷.

(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連結EF.請判斷BE+CF與EF的大小關系,并說明理由.

查看答案和解析>>

同步練習冊答案