分析 (1)根據(jù)直角三角形全等的方法“HL”證明;
(2)過(guò)點(diǎn)C作CG⊥AB交AB的延長(zhǎng)線于G,過(guò)點(diǎn)F作FH⊥DE交DE的延長(zhǎng)線于H,根據(jù)等角的補(bǔ)角相等求出∠CBG=∠FEH,再利用“角角邊”證明△CBG和△FEH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CG=FH,再利用“HL”證明Rt△ACG和Rt△DFH全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=∠D,然后利用“角角邊”證明△ABC和△DEF全等;
(3)以點(diǎn)C為圓心,以AC長(zhǎng)為半徑畫(huà)弧,與AB相交于點(diǎn)D,E與B重合,F(xiàn)與C重合,得到△DEF與△ABC不全等;
(4)根據(jù)三種情況結(jié)論,∠B不小于∠A即可.
解答 解:(1)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)斜邊直角邊對(duì)應(yīng)相等的兩個(gè)三角形全等可以知道Rt△ABC≌Rt△DEF,
故答案為:斜邊直角邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
(2)如圖,
過(guò)點(diǎn)C作CG⊥AB交AB的延長(zhǎng)線于G,過(guò)點(diǎn)F作FH⊥DE交DE的延長(zhǎng)線于H,
∵∠ABC=∠DEF,且∠ABC、∠DEF都是鈍角,
∴180°-∠ABC=180°-∠DEF,
即∠CBG=∠FEH,
在△CBG和△FEH中,
$\left\{\begin{array}{l}{∠CBG=∠FEH}\\{∠G=∠H=90°}\\{BC=EF}\end{array}\right.$,
∴△CBG≌△FEH(AAS),
∴CG=FH,
在Rt△ACG和Rt△DFH中,
∵$\left\{\begin{array}{l}{AC=DF}\\{CG=FH}\end{array}\right.$,
∴Rt△ACG≌Rt△DFH(HL),
∴∠A=∠D,
在△ABC和△DEF中,
∵$\left\{\begin{array}{l}{∠A=∠D}\\{∠ABC=∠DEF}\\{AC=DF}\end{array}\right.$,
∴△ABC≌△DEF(AAS);
(3)如圖,△DEF和△ABC不全等;
以點(diǎn)C為圓心,以AC長(zhǎng)為半徑畫(huà)弧,與AB相交于點(diǎn)D,E與B重合,F(xiàn)與C重合,得到△DEF與△ABC不全等.
(4)若∠B≥∠A,則△ABC≌△DEF,
故答案為:∠B≥∠A.
點(diǎn)評(píng) 本題考查了全等三角形的判定與性質(zhì),應(yīng)用與設(shè)計(jì)作圖,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一、三象限 | B. | 第三、四象限 | C. | 第一、二象限 | D. | 第二、四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6℃ | B. | -6℃ | C. | 10℃ | D. | -10℃ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,2) | B. | (-1,2)或(1,-2) | C. | (-9,18) | D. | (-9,18)或(9,-18) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com